Skip to main content
Log in

A Recursive Sparse Blind Source Separation Method and Its Application to Correlated Data in NMR Spectroscopy of Biofluids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Motivated by the nuclear magnetic resonance (NMR) spectroscopy of biofluids (urine and blood serum), we present a recursive blind source separation (rBSS) method for nonnegative and correlated data. BSS problem arises when one attempts to recover a set of source signals from a set of mixture signals without knowing the mixing process. Various approaches have been developed to solve BSS problems relying on the assumption of statistical independence of the source signals. However, signal independence is not guaranteed in many real-world data like the NMR spectra of chemical compounds. The rBSS method introduced in this paper deals with the nonnegative and correlated signals arising in NMR spectroscopy of biofluids. The statistical independence requirement is replaced by a constraint which requires dominant interval(s) from each source signal over some of the other source signals in a hierarchical manner. This condition is applicable for many real-world signals such as NMR spectra of urine and blood serum for metabolic fingerprinting and disease diagnosis. Exploiting the hierarchically dominant intervals from the source signals, the rBSS method reduces the BSS problem into a series of sub-BSS problems by a combination of data clustering, linear programming, and successive elimination of variables. Then in each sub-BSS problem, an 1 minimization problem is formulated for recovering the source signals in a sparse transformed domain. The method is substantiated by examples from NMR spectroscopy data and is promising towards separation and detection in complex chemical spectra without the expensive multi-dimensional NMR data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barton, R., Nicholson, J., Elliot, P., Holmes, E.: High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study. Int. J. Epidemiol. 37(Suppl. 1), i31–i40 (2008)

    Article  Google Scholar 

  2. Boardman, J.: Automated spectral unmixing of AVRIS data using convex geometry concepts. In: Summaries of the IV Annual JPL Airborne Geoscience Workshop, JPL Pub. 93-26, vol. 1, pp. 11–14 (1993)

    Google Scholar 

  3. Boflla, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Process. 81, 2353–2362 (2001)

    Article  Google Scholar 

  4. Chang, C.-I. (ed.): Hyperspectral Data Exploitation: Theory and Applications. Wiley-Interscience, New York (2007)

    Google Scholar 

  5. Choi, S., Cichocki, A., Park, H., Lee, S.: Blind source separation and independent component analysis: A review. Neural Inf. Process. - Lett. Rev. 6, 1–57 (2005)

    Google Scholar 

  6. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, New York (2005)

    Google Scholar 

  7. Comon, P.: Independent component analysis—a new concept? Signal Process. 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  8. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, San Diego (2010)

    Google Scholar 

  9. Drori, I.: Fast 1 minimization by iterative thresholding for multidimensional NMR spectroscopy. EURASIP J. Adv. Signal Process. 23, 1–10 (2007). doi:10.1155/2007/20248

    MathSciNet  Google Scholar 

  10. Ernst, R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, London (1987)

    Google Scholar 

  11. Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)

    Article  Google Scholar 

  12. Guo, Z., Osher, S.: Template matching via 1 minimization and its application to hyperspectral target detection. Tech. Rep. 09-103, UCLA (2009). www.math.ucla.edu/applied/cam/

  13. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  14. Koprivaa, I., Jerić, I., Smrečki, V.: Extraction of multiple pure component 1H and 13C NMR spectra from two mixtures: novel solution obtained by sparse component analysis-based blind decomposition. Anal. Chim. Acta 653, 143–153 (2009)

    Article  Google Scholar 

  15. Lee, D.D., Seung, H.S.: Learning of the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  16. Liu, J., Xin, J., Qi, Y.-Y.: A dynamic algorithm for blind separation of convolutive sound mixtures. Neurocomputing 72, 521–532 (2008)

    Article  Google Scholar 

  17. Liu, J., Xin, J., Qi, Y.-Y.: A soft-constrained dynamic iterative method of blind source separation. Multiscale Model. Simul. 7(4), 1795–1810 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, J., Xin, J., Qi, Y.-Y., Zeng, F.-G.: A time domain algorithm for blind separation of convolutive sound mixtures and L-1 constrained minimization of cross correlations. Commun. Math. Sci. 7(1), 109–128 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Morris, G.: In: Grant, D., Harris, R. (eds.) Encyclopedia of Nuclear Magnetic Resonance. Wiley, New York (2002)

    Google Scholar 

  20. Moussaouia, S., Hauksdóttir, H., Schmidt, F., Jutten, C., Chanussot, J., Briee, D., Douté, S., Benediktsson, J.A.: On the decomposition of Mars hyperspectral data by ICA and Bayesian positive source separation. Neurocomputing 71, 2194–2208 (2008)

    Article  Google Scholar 

  21. Nilsson, M., Connel, M., Davies, A., Morris, G.: Biexponential fitting of diffusion-ordered NMR data: practicalities and limitations. Anal. Chem. 78, 3040–3045 (2006)

    Article  Google Scholar 

  22. Naanaa, W., Nuzillard, J.-M.: Blind source separation of positive and partially correlated data. Signal Process. 85(9), 1711–1722 (2005)

    Article  MATH  Google Scholar 

  23. Nuzillard, D., Bourgb, S., Nuzillard, J.-M.: Model-free analysis of mixtures by NMR using blind source separation. J. Magn. Reson. 133, 358–363 (1998)

    Article  Google Scholar 

  24. Plumbley, M.: Conditions for non-negative independent component analysis. IEEE Signal Process. Lett. 9, 177–180 (2002)

    Article  Google Scholar 

  25. Plumbley, M.: Algorithms for nonnegative independent component analysis. IEEE Trans. Neural Netw. 4(3), 534–543 (2003)

    Article  Google Scholar 

  26. Stadlthanner, K., Tom, A., Theis, F., Gronwald, W., Kalbitzer, H.-R., Lang, E.: On the use of independent analysis to remove water artifacts of 2D NMR Protein Spectra. In: Proc. Bioeng ’2003 (2003)

    Google Scholar 

  27. Sun, Y., Ridge, C., del Rio, F., Shaka, A.J., Xin, J.: Postprocessing and sparse blind source separation of positive and partially overlapped data. Signal Process. 91, 1838–1851 (2011)

    Article  MATH  Google Scholar 

  28. Sun, Y., Xin, J.: Unique solvability of under-determined sparse blind source separation of nonnegative and partially overlapped data. In: IASTED International Conference on Signal and Image Processing, August 23–25, Hawaii, USA, pp. 710–717 (2010)

    Google Scholar 

  29. Vitols, C., Weljie, A.: Identifying and Quantifying Metabolites in Blood Serum and Plasma. Chenomx Inc. (2006)

  30. Winter, M.E.: N-findr: an algorithm for fast autonomous spectral endmember determination in hyperspectral data. In: Proc. of the SPIE, vol. 3753, pp. 266–275 (1999)

    Chapter  Google Scholar 

  31. Wu, W., Daszykowski, M., Walczak, B., Sweatman, B.C., Connor, S., Haselden, J., Crowther, D., Gill, R., Lutz, M.: Peak alignment of urine NMR spectra using fuzzy warping. J. Chem. Inf. Model. 46, 863–875 (2006)

    Article  Google Scholar 

  32. Yang, W., Wang, Y., Zhou, Q., Tang, H.: Analysis of human urine metabolites using SPE and NMR spectroscopy. Sci. China, Ser. B, Chem. Life Sci. Earth Sci. 51, 218–225 (2008)

    Article  Google Scholar 

  33. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithm for 1-minimization with applications to compressive sensing. SIAM J. Image. Sci. 1(143), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanchang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Xin, J. A Recursive Sparse Blind Source Separation Method and Its Application to Correlated Data in NMR Spectroscopy of Biofluids. J Sci Comput 51, 733–753 (2012). https://doi.org/10.1007/s10915-011-9528-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9528-9

Keywords

Navigation