Skip to main content
Log in

A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a simple extension of the well-known Riemann solver of Osher and Solomon (Math. Comput. 38:339–374, 1982) to a certain class of hyperbolic systems in non-conservative form, in particular to shallow-water-type and multi-phase flow models. To this end we apply the formalism of path-conservative schemes introduced by Parés (SIAM J. Numer. Anal. 44:300–321, 2006) and Castro et al. (Math. Comput. 75:1103–1134, 2006). For the sake of generality and simplicity, we suggest to compute the inherent path integral numerically using a Gaussian quadrature rule of sufficient accuracy. Published path-conservative schemes to date are based on either the Roe upwind method or on centered approaches. In comparison to these, the proposed new path-conservative Osher-type scheme has several advantages. First, it does not need an entropy fix, in contrast to Roe-type path-conservative schemes. Second, our proposed non-conservative Osher scheme is very simple to implement and nonetheless constitutes a complete Riemann solver in the sense that it attributes a different numerical viscosity to each characteristic field present in the relevant Riemann problem; this is in contrast to centered methods or incomplete Riemann solvers that usually neglect intermediate characteristic fields, hence leading to excessive numerical diffusion. Finally, the interface jump term is differentiable with respect to its arguments, which is useful for steady-state computations in implicit schemes. We also indicate how to extend the method to general unstructured meshes in multiple space dimensions. We show applications of the first order version of the proposed path-conservative Osher-type scheme to the shallow water equations with variable bottom topography and to the two-fluid debris flow model of Pitman & Le. Then, we apply the higher-order multi-dimensional version of the method to the Baer–Nunziato model of compressible multi-phase flow. We also clearly emphasize the limitations of our approach in a special chapter at the end of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229, 2759–2763 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andrianov, N., Warnecke, G.: The Riemann problem for the Baer–Nunziato two-phase flow model. J. Comput. Phys. 212, 434–464 (2004)

    Article  MathSciNet  Google Scholar 

  4. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. J. Multiphase Flow 12, 861–889 (1986)

    Article  MATH  Google Scholar 

  6. Bernetti, R., Titarev, V.A., Toro, E.F.: Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry. J. Comput. Phys. 227, 3212–3243 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Canestrelli, A., Dumbser, M., Siviglia, A., Toro, E.F.: Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed. Adv. Water Res. 33, 291–303 (2010)

    Article  Google Scholar 

  8. Canestrelli, A., Siviglia, A., Dumbser, M., Toro, E.F.: A well-balanced high order centered scheme for nonconservative systems: application to shallow water flows with fix and mobile bed. Adv. Water Res. 32, 834–844 (2009)

    Article  Google Scholar 

  9. Castro, M.J., Gallardo, J.M., Parés, C.: High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems. Math. Comput. 75, 1103–1134 (2006)

    Article  MATH  Google Scholar 

  10. Castro, M.J., LeFloch, P.G., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Castro, M.J., Pardo, A., Parés, C., Toro, E.F.: On some fast well-balanced first order solvers for nonconservative systems. Math. Comput. 79, 1427–1472 (2010)

    MATH  Google Scholar 

  12. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Deledicque, V., Papalexandris, M.V.: An exact Riemann solver for compressible two-phase flow models containing non-conservative products. J. Comput. Physics 222, 217–245 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dumbser, M., Balsara, D., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes. J. Comput. Phys. 227, 8209–8253 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dumbser, M., Castro, M., Parés, C., Toro, E.F.: ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows. Comput. Fluids 38, 1731–1748 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dumbser, M., Hidalgo, A., Castro, M., Parés, C., Toro, E.F.: FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 199, 625–647 (2010)

    Article  Google Scholar 

  17. Ferrari, A.: SPH simulation of free surface flow over a sharp-crested weir. Adv. Water Res. 33, 270–276 (2010)

    Article  Google Scholar 

  18. Ferrari, A., Dumbser, M., Toro, E.F., Armanini, A.: A new stable version of the SPH method in Lagrangian coordinates. Commun. Comput. Phys. 4, 378–404 (2008)

    MathSciNet  Google Scholar 

  19. Ferrari, A., Dumbser, M., Toro, E.F., Armanini, A.: A new 3D parallel SPH scheme for free surface flows. Comput. Fluids 38, 1203–1217 (2009)

    Article  MathSciNet  Google Scholar 

  20. Garcia-Navarro, P., Vázquez-Cendón, M.E.: On numerical treatment of the source terms in the shallow water equations. Comput. Fluids 29, 951–979 (2000)

    Article  MATH  Google Scholar 

  21. Glimm, J.: Solution in the large for nonlinear hyperbolic systems of equations. Commun. Pure. Appl. Math. 18, 697–715 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  22. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jiang, G.-S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. LeVeque, R.J.: Balancing source terms and flux gradients in highresolution Godunov methods. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  Google Scholar 

  26. Maso, G. Dal, LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74, 483–548 (1995)

    MATH  MathSciNet  Google Scholar 

  27. Noelle, S., Pankratz, N., Puppo, G., Natvig, J.R.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 474–499 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Osher, S.: Riemann solvers, the entropy condition and difference approximations. SIAM J. Numer. Anal. 21, 217–235 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  29. Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic conservation laws. Math. Comput. 38, 339–374 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  30. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pelanti, M., Bouchut, F., Mangeney, A.: A Roe-Type scheme for two-phase shallow granular flows over variable topography. Math. Model. Numer. Analysis 42, 851–885 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A 363, 1573–1601 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227, 1887–1922 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  35. Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425–467 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schwendeman, D.W., Wahle, C.W., Kapila, A.K.: The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212, 490–526 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  38. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys. 204, 715–736 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  40. Toumi, I.: A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102, 360–373 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. van Leer, B.: Towards the ultimate conservative difference scheme V: a second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dumbser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumbser, M., Toro, E.F. A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems. J Sci Comput 48, 70–88 (2011). https://doi.org/10.1007/s10915-010-9400-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9400-3

Keywords

Navigation