Skip to main content
Log in

A Mixed Finite Element Scheme for Optimal Control Problems with Pointwise State Constraints

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a mixed variational scheme for optimal control problems with point-wise state constraints, the main idea is to reformulate the optimal control problems to a constrained minimization problem involving only the state, which is characterized by a fourth order variational inequality. Then mixed form based on this fourth order variational inequality is formulated and a direct numerical algorithm is proposed without the optimality conditions of underlying optimal control problems. The a priori and a posteriori error estimates are proved for the mixed finite element scheme. Numerical experiments confirm the efficiency of the new strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartels, S., Carstensen, C.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM. Math. Comput. 71(239), 945–969 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39, 113–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bergounioux, M., Kunisch, K.: Augmented Lagrangian techniques for elliptic state constrained optimal control problems. SIAM J. Control Optim. 35, 1524–1543 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bergounioux, M., Kunisch, K.: Primal-dual strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22, 193–224 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bergounioux, M., Kunisch, K.: On the structure of Lagrange multipliers for state-constrained optimal control problems. Syst. Control Lett. 48, 169–176 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Casas, E.: Error estimate for the numerical approximation of semilinear elliptic control problems with finitely many state constraint. ESAIM Control Optim. Calc. Var. 8, 345–374 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Casas, E., Mateos, M.: Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21(1), 67–100 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Chen, Z.M., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problem. Numer. Math. 84, 527–548 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cherednichenko, S., Krumbiegel, K., Rösch, A.: Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Probl. 24(5), 055003 (2008)

    Article  Google Scholar 

  11. Clément, Ph.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975)

    Google Scholar 

  12. Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45, 1937–1953 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gong, W., Li, R., Yan, N.N., Zhao, W.B.: An improved error analysis for finite element approximation of bioluminescence tomography. J. Comput. Math. 26(3), 297–309 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Gong, W., Yan, N.N.: A posteriori error estimate for boundary control problems governed by the parabolic partial differential equations. J. Comput. Math. 27(1), 68–88 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  16. He, B.S.: Solving a class of linear projection equations. Numer. Math. 68, 71–80 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hintermüller, M., Hoppe, R.H.W.: Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2002)

    Article  MathSciNet  Google Scholar 

  19. Hintermüller, M., Kunisch, K.: Stationary optimal control problems with pointwise state constraints. SIAM J. Optim. 20, 1133–1156 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hintermüller, M., Ring, W.: A level set approach for the solution of a state-constrained optimal control problem. Numer. Math. 98, 135–166 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control problems. Syst. Control Lett. 50(3), 221–228 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Křížek, M., Neittaanmaki, P., Stenberg, R. (eds.): Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates. Lectures Notes in Pure and Applied Mathematics, vol. 196. Dekker, New York (1998)

    MATH  Google Scholar 

  23. Lin, Q., Yan, N.: Structure and Analysis for Efficient Finite Element Methods. Publishers of Hebei University (in Chinese) (1996)

  24. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  25. Liu, W.B., Gong, W., Yan, N.N.: A new finite element approximation of a state-constrained optimal control problem. J. Comput. Math. 27(1), 97–114 (2009)

    MATH  MathSciNet  Google Scholar 

  26. Liu, W.B., Yan, N.N.: A posteriori error analysis for convex distributed optimal control problems. Adv. Comput. Math. 15(1–4), 285–309 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal problems governed by Stokes equations. SIAM J. Numer. Anal. 40, 1850–1869 (2003)

    Article  MathSciNet  Google Scholar 

  28. Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu, W.B., Yan, N.N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)

    Google Scholar 

  30. Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern. 37, 51–85 (2008)

    MATH  Google Scholar 

  31. Pierre, M., Sokolowsky, J.: Differentiability of projection and applications. In: Control of Partial Differential Equations and Applications, Laredo, 1994. Lecture Notes in Pure and Appl. Math., vol. 174, pp. 231–240. Dekker, New York (1996)

    Google Scholar 

  32. Nochetto, R.H., Wahlbin, L.B.: Positivity preserving finite element approximation. Math. Comp. 71(240), 1405–1419 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yan, N.N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing (2008)

    Google Scholar 

  35. Yan, N.N., Zhou, A.H.: Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190(32–33), 4289–4299 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yan, N.N., Zhou, Z.J.: A priori and a posteriori error estimates of streamline diffusion finite element method for optimal control problem governed by convection dominated diffusion equation. Numer. Math.: Theory Methods Appl. 1, 297–320 (2008)

    MATH  MathSciNet  Google Scholar 

  37. Yuan, L., Yang, D.P.: A posteriori error estimate of optimal control problem of PDE with integral constraint for state. J. Comput. Math. 27(4), 525–542 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, W., Yan, N. A Mixed Finite Element Scheme for Optimal Control Problems with Pointwise State Constraints. J Sci Comput 46, 182–203 (2011). https://doi.org/10.1007/s10915-010-9392-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9392-z

Keywords

Navigation