Skip to main content
Log in

Unified Formulation for High-Order Streamline Tracing on Two-Dimensional Unstructured Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Accurate streamline tracing and travel time computation are essential ingredients of streamline methods for groundwater transport and petroleum reservoir simulation. In this paper we present a unified formulation for the development of high-order accurate streamline tracing algorithms on unstructured triangular and quadrilateral grids. The main result of this paper is the identification of velocity spaces that are suitable for streamline tracing. The essential requirement is that the divergence-free part of the velocity must induce a stream function. We recognize several classes of velocity spaces satisfying this requirement from the theory of mixed finite element methods and, for each class, we obtain the precise functional form of the stream function. Not surprisingly, the most widely used tracing algorithm (Pollock’s method) emanates in fact from the lowest-order admissible velocity approximation. Therefore, we provide a sound theoretical justification for the low-order algorithms currently in use, and we show how to achieve higher-order accuracy both in the streamline tracing and the travel time computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerer, P., Mosé, R., Siegel, P., Chavent, G.: Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity? Reply to the Comment by C. Cordes and W. Kinzelbach. Water Resour. Res. 32(6), 1911–1913 (1996)

    Article  Google Scholar 

  2. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Elsevier, Amsterdam (1979)

    Google Scholar 

  3. Babuška, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MATH  Google Scholar 

  4. Batycky, R.P., Blunt, M.J., Thiele, M.R.: A 3D field-scale streamline-based reservoir simulator. SPE Reserv. Eng. 11(4), 246–254 (1997)

    Google Scholar 

  5. Bear, J.: Dynamics of Fluids in Porous Media. Environmental Science Series. Elsevier, Amsterdam (1972). Reprinted with corrections, Dover, New York (1988)

    Google Scholar 

  6. Bratvedt, F., Bratvedt, K., Buchholz, C.F., Gimse, T., Holden, H., Holden, L., Risebro, N.H.: Frontline and Frontsim, two full scale, two-phase, black oil reservoir simulators based on front tracking. Surv. Math. Ind. 3, 185–215 (1993)

    MATH  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (1994)

    MATH  Google Scholar 

  8. Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numér. 8, 129–151 (1974)

    MathSciNet  Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)

    MATH  Google Scholar 

  10. Brezzi, F., Douglas, J. Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brezzi, F., Douglas, J. Jr., Duran, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cai, Z., Douglas, J. Jr.: Park, M. Development and analysis of higher order finite volume methods over rectangles for elliptic equations. Adv. Comput. Math. 19, 3–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chavent, G., Jaffré, J.: Mathematical Models and Finite Elements for Reservoir Simulation. Studies in Mathematics and Its Applications, vol. 17. Elsevier, Amsterdam (1986)

    MATH  Google Scholar 

  14. Chen, Z., Ewing, R.E.: Comparison of various formulations of three-phase flow in porous media. J. Comput. Phys. 132, 362–373 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cordes, C., Kinzelbach, W.: Continuous groundwater velocity fields and path lines in linear, bilinear, and trilinear finite elements. Water Resour. Res. 28(11), 2903–2911 (1992)

    Article  Google Scholar 

  16. Cordes, C., Kinzelbach, W.: Comment on “Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?” by R. Mosé, P. Siegel, P. Ackerer, and G. Chavent. Water Resour. Res. 32(6), 1905–1909 (1996)

    Article  Google Scholar 

  17. Durlofsky, L.J.: Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities. Water Resour. Res. 30(4), 965–973 (1994)

    Article  Google Scholar 

  18. Feng, D., Wang, X.M., Cai, W.L., Shi, J.: A mass conservative flow field visualization method. Comput. Graph. 21(6), 749–756 (1997)

    Article  Google Scholar 

  19. Guadagnini, A., Sánchez-Vila, X., Riva, M., De Simoni, M.: Mean travel time of conservative solutes in randomly heterogeneous unbounded domains under mean uniform flow. Water Resour. Res. 39(3), 1050 (2003). doi:10.1029/2002WR001811

    Article  Google Scholar 

  20. Hægland, H., Dahle, H.K., Eigestad, G.T., Lie, K.A., Aavatsmark, I.: Improved streamlines and time-of-flight for streamline simulation on irregular grids. Adv. Water Resour. 30(4), 1027–1045 (2007). doi:10.1016/j.advwatres.2006.09.002

    Article  Google Scholar 

  21. Jimenez, E., Sabir, K., Datta-Gupta, A., King, M.J.: Spatial error and convergence in streamline simulation. SPE Reserv. Evalu. Eng. 10(3), 221–232 (2007)

    Google Scholar 

  22. Kaasschieter, E.F.: Mixed finite elements for accurate particle tracking in saturated groundwater flow. Adv. Water Resour. 18(5), 277–294 (1995)

    Article  Google Scholar 

  23. King, M.J., Datta-Gupta, A.: Streamline simulation: A current perspective. In Situ 22(1), 91–140 (1998)

    Google Scholar 

  24. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983). Reprinted with corrections, Dover, New York (1994)

    MATH  Google Scholar 

  25. Matringe, S.F., Gerritsen, M.G.: On accurate tracing of streamlines. In: SPE Annual Technical Conference and Exhibition, Houston, TX (SPE 89920) (2004)

  26. Matringe, S.F., Juanes, R., Tchelepi, H.A.: Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids. J. Comput. Phys. 219, 992–1012 (2006). doi:10.1016/j.jcp.2006.07.004

    Article  MATH  MathSciNet  Google Scholar 

  27. Matringe, S.F., Juanes, R., Tchelepi, H.A.: Tracing streamlines on unstructured grids from finite volume discretizations. In: SPE Annual Technical Conference and Exhibition, San Antonio, TX (SPE 103295) (2006). To appear in Soc. Pet. Eng. J.

  28. Matringe, S.F., Juanes, R., Tchelepi, H.A.: Mixed finite element and related control volume discretizations for reservoir simulation on three-dimensional unstructured grids. In: SPE Reservoir Simulation Symposium, Houston, TX (SPE 106117) (2007)

  29. Matringe, S.F., Juanes, R., Tchelepi, H.A.: A new mixed finite element on hexahedra that reduces to a cell-centered finite difference method. Numer. Math. (2008, submitted)

  30. Matringe, S.F., Juanes, R., Tchelepi, H.A.: Streamline tracing on general triangular or quadrilateral grids. Soc. Pet. Eng. J. 12(2), 217–223 (2007). doi:10.2118/96411–PA

    Google Scholar 

  31. Mosé, R., Siegel, P., Ackerer, P., Chavent, G.: Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity? Water Resour. Res. 30(11), 3001–3012 (1994)

    Article  Google Scholar 

  32. Nedelec, J.C.: Mixed finite elements in ℝ3. Numer. Math. 35, 315–341 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pollock, D.W.: Semianalytical computation of path lines for finite difference models. Ground Water. 26, 743–750 (1988)

    Article  Google Scholar 

  34. Prevost, M., Edwards, M.G., Blunt, M.J.: Streamline tracing on curvilinear structured and unstructured grids. Soc. Pet. Eng. J. 7(2), 139–148 (2002)

    Google Scholar 

  35. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, New York (1977)

    Chapter  Google Scholar 

  36. Russell, T.F., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. In: Ewing, R.E. (ed.) The Mathematics of Reservoir Simulation, pp. 35–106. SIAM, Philadelphia (1983)

    Google Scholar 

  37. Weiser, A., Wheeler, M.F.: On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25(2), 351–375 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44(5), 2082–2106 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Juanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juanes, R., Matringe, S.F. Unified Formulation for High-Order Streamline Tracing on Two-Dimensional Unstructured Grids. J Sci Comput 38, 50–73 (2009). https://doi.org/10.1007/s10915-008-9228-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9228-2

Keywords

Navigation