Skip to main content
Log in

Convex ENO Schemes for Hamilton–Jacobi Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In one dimension, viscosity solutions of Hamilton–Jacobi (HJ) equations can be thought as primitives of entropy solutions for conservation laws. Based on this idea, both theoretical and numerical concepts used for conservation laws can be passed to HJ equations even in several dimensions. In this paper, we construct convex ENO (CENO) schemes for HJ equations. This construction is a generalization from the work by Liu and Osher on CENO schemes for conservation laws. Several numerical experiments are performed. L 1 and L error and convergence rate are calculated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardi M., Crandall M.G., Evans L.C., Soner H.M., Souganidis P.E. (1997). Viscosity Solutions and Applications. LNM 1660, Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  2. Bryson S., Levy D. (2003). High-order central WENO schemes for multidimensional Hamilton-Jacobi equations. SIAM J. Num. Anal. 41, 1339–1369

    Article  MATH  MathSciNet  Google Scholar 

  3. Bryson B., Kurganov A., Levy D., Petrova G. (2005). Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations. IMA J. Num. Anal. 25, 113–138

    Article  MATH  MathSciNet  Google Scholar 

  4. Bryson S., Levy D. (2006). Mapped WENO and weighted power ENO reconstructions in semi-discrete central schemes for Hamilton-Jacobi equations. Appl. Num. Math. 56, 1211–1224

    Article  MATH  MathSciNet  Google Scholar 

  5. Crandall M.G., Lions P.-L. (1983). Viscosity solutions of Hamilton-Jacobi equations. Trans. AMS. 277, 1–42

    Article  MATH  MathSciNet  Google Scholar 

  6. Crandall M.G., Lions P.-L. (1984). Two approximations of solutions of Hamilton-Jacobi Equations. Math. Comput. 43, 1–19

    Article  MATH  MathSciNet  Google Scholar 

  7. Gottlieb S., Shu C.-W., Tadmor E. (2001). High order time discretization methods with the strong stability property. SIAM Rev. 43, 89–112

    Article  MATH  MathSciNet  Google Scholar 

  8. Harten A., Engquist B., Osher S., Chakravarthy S. (1987). Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303

    Article  MATH  MathSciNet  Google Scholar 

  9. Hu C.-Q., Shu C.-W. (1999). A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 666–690

    Article  MATH  MathSciNet  Google Scholar 

  10. Jiang G.-S., Levy D., Lin C.-T., Osher S., Tadmor E (1998). High resolution non-oscillatory central schemes with non-staggered grids for hyperbolic conservation laws. SIAM J. Num. Anal. 35, 2147–2168

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang G.-S., Peng D.-P. (2000). Weighted ENO schemes for Hmilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143

    Article  MATH  MathSciNet  Google Scholar 

  12. Jin S., Xin Z.-P. (1998). Numerical passage from systems of conservation laws to Hamilton-Jacobi equations. SIAM J. Num. Anal. 35, 2385–2404

    Article  MATH  MathSciNet  Google Scholar 

  13. Jiang G.-S., Tadmor E. (1998). Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19, 1892–1917

    Article  MATH  MathSciNet  Google Scholar 

  14. Kurganov A., Petrova G. (2006). Adaptive central-upwind schemes for Hamilton-Jacobi equations with nonconvex hamiltonians. J. Sci. Comput. 27, 323–333

    Article  MATH  Google Scholar 

  15. Kurganov A., Tadmor E. (2000). New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282

    Article  MATH  MathSciNet  Google Scholar 

  16. Kurganov A., Tadmor E. (2000). New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations. J. Comput. Phys. 160, 720–742

    Article  MATH  MathSciNet  Google Scholar 

  17. Kurganov A., Lin C.-T. (2007). On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2(1): 141–163

    Google Scholar 

  18. Kurganov A., Petrova G. (2005). Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Num. Methods Partial Differ. Eq. 21, 536–552

    Article  MATH  MathSciNet  Google Scholar 

  19. Levy D., Nayak S., Shu CW., Zhang YT (2005). Central WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 28, 2229–2247

    Article  MathSciNet  Google Scholar 

  20. Lin C.-T., Tadmor E. (2000). High-resolution non-oscillatory central schemes for Hamilton-Jacobi solutions. SIAM Sci. Comp. 21, 2163–2186

    Article  MATH  MathSciNet  Google Scholar 

  21. Lin C.-T., Tadmor E. (2001). L 1-stability and error estimates for approximate Hamilton-Jacobi solutions. Num. Math. 87, 701–735

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu X.-D., Osher S. (1998). Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids. J. Comput. Phys. 142, 304–330

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu X.-D., Tadmor E. (1998). Third order non-oscillatory central scheme for hyperbolic conservation laws. Num. Math. 79, 397–425

    Article  MATH  MathSciNet  Google Scholar 

  24. Nessyahu H., Tadmor E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–448

    Article  MATH  MathSciNet  Google Scholar 

  25. Osher S., Shu C.-W. (1991). High-order essential nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Num. Anal. 28, 907–922

    Article  MATH  MathSciNet  Google Scholar 

  26. Shu C.-W., Osher S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471

    Article  MATH  MathSciNet  Google Scholar 

  27. Shu C.-W., Osher S. (1989). Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Tien Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CT., Liu, XD. Convex ENO Schemes for Hamilton–Jacobi Equations. J Sci Comput 31, 195–211 (2007). https://doi.org/10.1007/s10915-006-9121-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-006-9121-9

Keywords

Navigation