Skip to main content
Log in

TVD Fluxes for the High-Order ADER Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we propose to use a TVD flux, instead of a first-order monotone flux, as the building block for designing very high-order methods; we implement the idea in the context of ADER schemes via a new flux expansion. Systematic assessment of the new schemes shows substantial gains in accuracy; these are particularly evident for problems involving long time evolution

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Balsara C.W. Shu (2000) ArticleTitleMonotonicity preserving weighted essentially non–oscillatory schemes with increasingly high order of accuracy J. Comput. Phys 160 405–452 Occurrence Handle10.1006/jcph.2000.6443 Occurrence HandleMR1763821

    Article  MathSciNet  Google Scholar 

  2. M. Ben-Artzi J. Falcovitz (1984) ArticleTitleA second order Godunov–type scheme for compressible fluid dynamics J. Comput. Phys 55 1–32 Occurrence Handle10.1016/0021-9991(84)90013-5

    Article  Google Scholar 

  3. S.J. Billett E.F. Toro (1997) ArticleTitleWAF–type schemes for multidimensional hyperbolic conservation laws J. Comp. Phys. 130 1–24 Occurrence Handle10.1006/jcph.1996.5470

    Article  Google Scholar 

  4. P. Colella (1985) ArticleTitleA direct eulerian MUSCL scheme for gas dynamics SIAM J. Sci. Stat. Comput 6 104–117 Occurrence Handle10.1137/0906009

    Article  Google Scholar 

  5. S.K. Godunov (1959) ArticleTitleFinite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics Mat. Sb 47 271–306

    Google Scholar 

  6. A. Harten B. Engquist S. Osher S.R. Chakravarthy (1987) ArticleTitleUniformly high order accuracy essentially non–oscillatory schemes III J. Comput. Phys 71 231–303 Occurrence Handle10.1016/0021-9991(87)90031-3

    Article  Google Scholar 

  7. Jiang G.S., Shu C.W. (1995). Efficient implementation of weigthed ENO schemes. Technical Report ICASE 95–73. NASA Langley Research Center, Hampton USA

  8. M. Käser (2003) Adaptive Methods for the Numerical Simulation of Transport Processes University of Munich Germany

    Google Scholar 

  9. Käser M. (2004). ADER Schemes for the solution of conservation laws on adaptive triangulations. Mathematical Methods and Modelling in Hydrocarbon Exploration and Production. Springer-Verlag, Berlin. (to appear)

  10. I.S. Men’shov (1990) ArticleTitleIncreasing the order of approximation of godunov’s scheme using the generalized riemann problem USSR Comput. Math. Phys 30 IssueID5 54–65 Occurrence Handle10.1016/0041-5553(90)90161-K

    Article  Google Scholar 

  11. T. Schwartzkopff C.D. Munz E.F. Toro (2002) ArticleTitleADER: high-order approach for linear hyperbolic systems in 2D J. Sci. Comput 17 231–240 Occurrence Handle10.1023/A:1015160900410 Occurrence HandleMR1910564

    Article  MathSciNet  Google Scholar 

  12. Schwartzkopff T., Munz C.D., Toro E.F., Millington R.C. (2001). ADER-2D: A high-order approach for linear hyperbolic systems in 2D. In European Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS Computational Fluid Dynamics Conference 2001, Swansea, Wales, 4–7 September 2001:pp. -, 2001.

  13. C.W. Shu (1986) ArticleTitleTotal-variation-diminishing time discretizations SIAM J. Sci. Stat. Comp 9 1073–1084 Occurrence Handle10.1137/0909073

    Article  Google Scholar 

  14. Shu C.W. (1997). Essentially Non–oscillatory and Weighted Non–oscillatory Schemes for Hyperbolic Conservation Laws. Technical Report ICASE Report No. 97–65, NASA.

  15. A. Suresh T. Huynh (1997) ArticleTitleAccurate monotonicity preserving scheme using Runge–Kutta time stepping J. Comput. Phys 136 83–99 Occurrence Handle10.1006/jcph.1997.5745

    Article  Google Scholar 

  16. Y. Takakura E.F. Toro (2002) ArticleTitleArbitrarily accurate non-oscillatory schemes for a non-linear conservation law J. Compu. Fluid Dyn 11 IssueID1 7–18

    Google Scholar 

  17. V.A. Titarev E.F. Toro (2002) ArticleTitleADER: Arbitrary high order Godunov approach J. Sci. Comput 17 609–618 Occurrence Handle10.1023/A:1015126814947 Occurrence HandleMR1910755

    Article  MathSciNet  Google Scholar 

  18. V.A. Titarev E.F. Toro (2003) ArticleTitleHigh-order ADER schemes for scalar advection-reaction-diffusion equations CFD J. 12 IssueID1 1–6

    Google Scholar 

  19. E.F. Toro (1989) ArticleTitleA weighted average flux method for hyperbolic conservation laws Proc. Roy. Soc. London A423 401–418

    Google Scholar 

  20. E.F. Toro (1992) ArticleTitleRiemann problems and the WAF method for solving two–dimensional shallow water equations Phil. Trans. Roy. Soc. London A338 43–68

    Google Scholar 

  21. E.F. Toro (1992) ArticleTitleThe weighted average flux method applied to the time–dependent euler equations Phil. Trans. Roy. Soc. London A341 499–530

    Google Scholar 

  22. E.F. Toro (1998) Primitive, conservative and adaptive schemes for hyperbolic conservation laws E.F. Toro J.F Clarke (Eds) Numerical Methods for Wave Propagation Kluwer Academic Publishers Dordrecht 323–385

    Google Scholar 

  23. E.F. Toro (1999) Riemann Solvers and Numerical Methods for Fluid Dynamics EditionNumber2 Springer–Verlag Berlin

    Google Scholar 

  24. E.F. Toro R.C. Millington L.A.M. Nejad (1998) Primitive upwind numerical methods for hyperbolic partial differential equations C.H. Bruneau (Eds) Sixteenth Internacional Confereence on Numerical Methods for Fluid Dynamics. Lecture Notes in Physics. Springer-Verlag Berlin 421–426

    Google Scholar 

  25. E.F. Toro R.C. Millington L.A.M. Nejad (2001) Towards very high–order Godunov schemes E.F Toro (Eds) Godunov Methods: Theory and Applications Edited Review Kluwer Academic/Plenum Publishers Dordrecht 905–937

    Google Scholar 

  26. Toro E.F., Spruce M., Speares W. (1992). Restoration of the contact surface in the HLL Riemann solver. Technical Report COA–9204. College of Aeronautics Cranfield Institute of Technology, UK

  27. E.F. Toro M. Spruce W. Speares (1994) ArticleTitleRestoration of the contact surface in the HLL–Riemann solver Shock Waves 4 25–34 Occurrence Handle10.1007/BF01414629

    Article  Google Scholar 

  28. E.F. Toro V.A. Titarev (2002) ArticleTitleSolution of the generalised Riemann problem for advection-reaction equations Proc. Roy. Soc. London A 458 271–281

    Google Scholar 

  29. Toro E.F., Titarev V.A. (2003). ADER schemes for scalar hyperbolic conservation laws in three space dimensions. Technical Report NI03063-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK

  30. P. Woodward P. Colella (1984) ArticleTitleThe numerical simulation of two–dimensional fluid flow with strong shocks. J. Comput Phys 54 115–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Toro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toro, E.F., Titarev, V.A. TVD Fluxes for the High-Order ADER Schemes. J Sci Comput 24, 285–309 (2005). https://doi.org/10.1007/s10915-004-4790-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-4790-8

Keywords

Navigation