Skip to main content
Log in

Pure quadratization and solution of ordinary differential equations by probabilistic evolution theory with concurrent computation of coefficients using exact arithmetic

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Probabilistic evolution theory provides a promising method for the solution of ordinary differential equations with multinomial right hand side functions. In this work, the solution by probabilistic evolution theory is implemented in C++ programming language. A novel algorithm for concurrent computation of the coefficients of the series expansion is designed and implemented. Using the program, approximate solutions for different ordinary differential equations are obtained and the results are compared to results of certain prominent methods for numerical solution of ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C. Gözükırmızı, Beam search for space extension in explicit ordinary differential equation conicalization. Comput. Technol. 27(6), 100–114 (2022). https://doi.org/10.25743/ICT.2022.27.6.009

    Article  Google Scholar 

  2. C. Gözükırmızı, M. Demiralp, Probabilistic evolution theory for explicit autonomous ordinary differential equations: recursion of squarified telescope matrices and optimal space extension. J. Math. Chem. 56(7), 1826–1848 (2018). https://doi.org/10.1007/s10910-017-0849-2

    Article  MathSciNet  CAS  Google Scholar 

  3. C. Gözükırmızı, M. Demiralp, Solving odes by obtaining purely second degree multinomials via branch and bound with admissible heuristic. Mathematics 7(4), 367 (2019). https://doi.org/10.3390/math7040367

    Article  Google Scholar 

  4. M. Demiralp, Probabilistic evolution theory in its basic aspects, and its fundamental progressive stages. Math. Eng. Sci. Aerospace 9(2), 245–275 (2018)

    Google Scholar 

  5. M. Demiralp, Promenading in the enchanted realm of Kronecker powers: single monomial probabilistic evolution theory (Prevth) in evolver dynamics. J. Math. Chem. 56(7), 2001–2023 (2018). https://doi.org/10.1007/s10910-017-0822-0

    Article  MathSciNet  CAS  Google Scholar 

  6. C. Gözükırmızı, M. Demiralp, Probabilistic evolution approach for the solution of explicit autonomous ordinary differential equations. Part 1: Arbitrariness and equipartition theorem in Kronecker power series. J. Math. Chem. 52(3), 866–880 (2014). https://doi.org/10.1007/s10910-013-0298-5

    Article  MathSciNet  CAS  Google Scholar 

  7. C. Gözükırmızı, M. Demiralp, Probabilistic evolution approach for the solution of explicit autonomous ordinary differential equations. Part 2: Kernel separability, space extension, and series solution via telescopic matrices. J. Math. Chem. 52(3), 881–898 (2014). https://doi.org/10.1007/s10910-013-0299-4

    Article  MathSciNet  CAS  Google Scholar 

  8. C. Gözükırmızı, Space-extension-of-explicit-ODEs (2022). https://github.com/cosargozukirmizi/space-extension-of-explicit-ODEs

  9. The GNU multiple precision arithmetic library, version 6.3.0. https://gmplib.org

  10. C. Gözükırmızı, M.E. Kırkın, M. Demiralp, Probabilistic evolution theory for the solution of explicit autonomous ordinary differential equations: squarified telescope matrices. J. Math. Chem. 55(1), 175–194 (2017). https://doi.org/10.1007/s10910-016-0678-8

    Article  MathSciNet  CAS  Google Scholar 

  11. A. Bychkov, G. Pogudin, Optimal monomial quadratization for ode systems, in Comb. Algorithms. ed. by P. Flocchini, L. Moura (Springer, Cham, 2021), pp.122–136

    Chapter  Google Scholar 

  12. Y.S. Ilyashenko, An example of eqations \(\frac{dw}{dz}=\frac{P_{n}(z, w)}{Q_{n}(z, w)}\) having a countable number of limit cycles and arbitrarily large petrovskii-landis genus. Math. USSR-Sbornik 9(3), 365–378 (1969). https://doi.org/10.1070/sm1969v009n03abeh001288

    Article  Google Scholar 

  13. A. Bychkov, QBee. https://github.com/AndreyBychkov/QBee. Accessed 2023

  14. J.S. Sochacki, Polynomial odes-examples, solutions, properties. Neural Parallel Sci. Comput. 18(3–4), 441–450 (2010). https://doi.org/10.5555/1991956.1991972

    Article  MathSciNet  Google Scholar 

  15. D.C. Carothers, S.K. Lucas, G.E. Parker, J.D. Rudmin, J.S. Sochacki, R.J. Thelwell, A. Tongen, P.G. Warne, Connections between power series methods and automatic differentiation, in Recent Advances in Algorithmic Differentiation. ed. by S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (Springer, Berlin, 2012), pp.175–185

    Chapter  Google Scholar 

  16. P. Eberhard, C. Bischof, Automatic differentiation of numerical integration algorithms. Math. Comput. 68(226), 717–731 (1999). https://doi.org/10.1090/S0025-5718-99-01027-3

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Jorba, M. Zou, A software package for the numerical integration of odes by means of high-order Taylor methods. Exp. Math. 14(1), 99–117 (2005). https://doi.org/10.1080/10586458.2005.10128904

    Article  MathSciNet  Google Scholar 

  18. R. Barrio, Performance of the Taylor series method for ODES/DAES. Appl. Math. Comput. 163(2), 525–545 (2005). https://doi.org/10.1016/j.amc.2004.02.015

    Article  MathSciNet  Google Scholar 

  19. D.H. Bailey, R. Barrio, J.M. Borwein, High-precision computation: mathematical physics and dynamics. Appl. Math. Comput. 218(20), 10106–10121 (2012). https://doi.org/10.1016/j.amc.2012.03.087

    Article  MathSciNet  Google Scholar 

  20. R. Barrio, A. Dena, W. Tucker, A database of rigorous and high-precision periodic orbits of the Lorenz model. Comput. Phys. Commun. 194, 76–83 (2015). https://doi.org/10.1016/j.cpc.2015.04.007

    Article  ADS  CAS  Google Scholar 

  21. V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, T.E. Simos, C. Tsitouras, Runge-Kutta embedded methods of orders 8(7) for use in quadruple precision computations. Mathematics 10(18), 3247 (2022). https://doi.org/10.3390/math10183247

    Article  Google Scholar 

  22. V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, T.E. Simos, C. Tsitouras, Runge-Kutta pairs of orders 9(8) for use in quadruple precision computations. Numerical Algorithms (2023). https://doi.org/10.1007/s11075-023-01632-8

    Article  Google Scholar 

  23. R.P. Stanley, Differentiably finite power series. Eur. J. Comb. 1(2), 175–188 (1980). https://doi.org/10.1016/S0195-6698(80)80051-5

    Article  MathSciNet  Google Scholar 

  24. A.D. Bruno, Power geometry. J. Dyn. Control Syst. 3(4), 471–491 (1997). https://doi.org/10.1007/BF02463279

    Article  MathSciNet  Google Scholar 

  25. A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, E. Schost, A. Sedoglavic, Fast computation of power series solutions of systems of differential equations. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA’07, pp. 1012–1021. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2007). https://doi.org/10.5555/1283383.1283492

  26. H.Z. Munthe-Kaas, A. Lundervold, On post-lie algebras, Lie–Butcher series and moving frames. Found. Comput. Math. 13, 583–613 (2013). https://doi.org/10.1007/s10208-013-9167-7

    Article  MathSciNet  Google Scholar 

  27. C. Bai, L. Guo, Y. Sheng, R. Tang, Post-groups, (lie-)butcher groups and the Yang-Baxter equation. Math. Annal. (2023). https://doi.org/10.1007/s00208-023-02592-z

    Article  Google Scholar 

  28. C. Gözükırmızı (2023). https://github.com/cosargozukirmizi/tui-prevth

  29. K. Burrage, Parallel methods for ODES. Adv. Comput. Math. 7, 1–3 (1997). https://doi.org/10.1023/A:1018997130884

    Article  MathSciNet  Google Scholar 

  30. A. Williams, C++ Concurrency in Action (Manning, New York, 2019)

    Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coşar Gözükırmızı.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The source code space-extension-of-explicit-ODEs is publicly available for download at https://github.com/cosargozukirmizi/space-extension-of-explicit-ODEs. The source code tui-prevth is publicly available for download at https://github.com/cosargozukirmizi/tui-prevth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gözükırmızı, C. Pure quadratization and solution of ordinary differential equations by probabilistic evolution theory with concurrent computation of coefficients using exact arithmetic. J Math Chem 62, 654–680 (2024). https://doi.org/10.1007/s10910-023-01563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-023-01563-8

Keywords

Mathematics Subject Classification

Navigation