Skip to main content
Log in

Fibonacci wavelet collocation method for the numerical approximation of fractional order Brusselator chemical model

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This research study’s primary goal is to create an efficient wavelet collocation technique to resolve a kind of nonlinear fractional order systems of ordinary differential equations that arise in the modeling of autocatalytic chemical reaction problems. Here, we created the functional matrix of integration for the Fibonacci wavelets. The Fibonacci wavelet collocation method is employed to find the numerical solution of the system of nonlinear coupled ordinary differential equations of both integer and fractional order. The nonlinear Brusselator system is transformed into an algebraic equation system using the operational matrices of fractional derivative and collocation technique. These algebraic equations are treated by the Newton–Raphson method, and obtained unknown coefficient values are substituted in the approximation. We demonstrate our method’s computational effectiveness and accuracy using different model constraints in the numerical examples. The effectiveness and consistency of the developed strategy’s performance are shown in graphs and tables. Comparisons with existing methods available in the literature demonstrate the high accuracy and robustness of the developed Fibonacci wavelet collocation method. Mathematical software Mathematica has been used to perform all calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available within the article.

References

  1. I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48(4), 1695–1700 (1968)

    Article  Google Scholar 

  2. S. Momani, Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 355(4–5), 271–279 (2006)

    Article  CAS  Google Scholar 

  3. H. Xu, A generalized analytical approach for highly accurate solutions of fractional differential equations. Chaos Solitons Fract. 166, 112917 (2023)

    Article  Google Scholar 

  4. Z. Odibat, S. Kumar, A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equations. J. Comput. Nonlinear Dyn. 14(8), 081004 (2019)

    Article  Google Scholar 

  5. H.A. Alkresheh, A.I. Ismail, Multi-step fractional differential transform method for the solution of fractional order stiff systems. Ain Shams Eng. J. 12(4), 4223–4231 (2021)

    Article  Google Scholar 

  6. O. Abdulaziz, I. Hashim, S. Momani, Solving systems of fractional differential equations by homotopy-perturbation method. Phys. Lett. A 372(4), 451–459 (2008)

    Article  CAS  Google Scholar 

  7. M.Y. Ongun, D. Arslan, R. Garrappa, Nonstandard finite difference schemes for a fractional-order Brusselator system. Adv. Differ. Equ. 2013, 1–13 (2013)

    Article  Google Scholar 

  8. Z.U.A. Zafar, K. Rehan, M. Mushtaq, M. Rafiq, Numerical treatment for nonlinear Brusselator chemical model. J. Differ. Equ. Appl. 23(3), 521–538 (2017)

    Article  Google Scholar 

  9. H. Jafari, A. Kadem, D. Baleanu, Variational iteration method for a fractional-order Brusselator system. In Abstract and Applied Analysis, vol. 2014. Hindawi.

  10. C. Bota, B. Căruntu, Approximate analytical solutions of the fractional-order brusselator system using the polynomial least squares method. Adv. Math. Phys. (2015)

  11. H. Khan, H. Jafari, R.A. Khan, H. Tajadodi, S.J. Johnston, Numerical solutions of the nonlinear fractional-order Brusselator system by Bernstein polynomials. Sci. World J. (2014)

  12. P. Chang, A. Isah, Legendre wavelet operational matrix of fractional derivative through wavelet-polynomial transformation and its applications in solving fractional Order Brusselator system. J. Phys. 693(1), 012001 (2016)

    Google Scholar 

  13. M. Izadi, H.M. Srivastava, Fractional clique collocation technique for numerical simulations of fractional-order Brusselator chemical model. Axioms 11(11), 654 (2022)

    Article  Google Scholar 

  14. V. Gafiychuk, B. Datsko, Stability analysis and limit cycle in fractional system with Brusselator nonlinearities. Phys. Lett. A 372(29), 4902–4904 (2008)

    Article  CAS  Google Scholar 

  15. L.G. Yuan, J.H. Kuang, Stability and a numerical solution of fractional-order Brusselator chemical reaction system. J. Fract. Calc. Appl 8(1), 38–47 (2017)

    Google Scholar 

  16. R.K. Asv, S. Devi, A novel three-step iterative approach for oscillatory chemical reactions of fractional brusselator model. Int. J. Modell. Simul. 1–20. (2022)

  17. A.A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing laplace residual power series. Symmetry 14(9), 1944 (2022)

    Article  Google Scholar 

  18. W. Beghami, B. Maayah, O.A. Arqub, S. Bushnaq, Fractional approximate solutions of 2D reaction–diffusion Brusselator model using the novel Laplace-optimized decomposition approach. Int. J. Mod. Phys. C 34, 2350086 (2022)

    Article  Google Scholar 

  19. A. Anber, Z. Dahmani, Solutions of the reaction-diffusion Brusselator with fractional derivatives. J. Interdiscip. Math. 17(5–6), 451–460 (2014)

    Article  Google Scholar 

  20. S. Dhawan, J.A.T. Machado, D.W. Brzeziński, M.S. Osman, A Chebyshev wavelet collocation method for some types of differential problems. Symmetry 13(4), 536 (2021)

    Article  Google Scholar 

  21. M. Faheem, A. Raza, A. Khan, Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations. Math. Comput. Simul. 180, 72–92 (2021)

    Article  Google Scholar 

  22. S. Kumbinarasaiah, K.R. Raghunatha, The applications of Hermite wavelet method to nonlinear differential equations arising in heat transfer. Int. J. Thermofluids 9, 100066 (2021)

    Article  Google Scholar 

  23. S. Kumbinarasaiah, R.A. Mundewadi, Numerical solution of fractional-order integro-differential equations using Laguerre wavelet method. J. Inf. Optim. Sci. 43(4), 643–662 (2022)

    Google Scholar 

  24. S. Erman, A. Demir, E. Ozbilge, Solving inverse nonlinear fractional differential equations by generalized Chelyshkov wavelets. Alex. Eng. J. 66, 947–956 (2023)

    Article  Google Scholar 

  25. X. Li, Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Commun. Nonlinear Sci. Numer. Simul. 17(10), 3934–3946 (2012)

    Article  Google Scholar 

  26. A. Isah, C. Phang, Genocchi wavelet-like operational matrix and its application for solving nonlinear fractional differential equations. Open Phys. 14(1), 463–472 (2016)

    Article  Google Scholar 

  27. T.N. Vo, M. Razzaghi, P.T. Toan, Fractional-order generalized Taylor wavelet method for systems of nonlinear fractional differential equations with application to human respiratory syncytial virus infection. Soft. Comput. 26, 165–173 (2022)

    Article  Google Scholar 

  28. T. Abdeljawad, R. Amin, K. Shah, Q. Al-Mdallal, F. Jarad, Efficient sustainable algorithm for numerical solutions of systems of fractional order differential equations by Haar wavelet collocation method. Alex. Eng. J. 59(4), 2391–2400 (2020)

    Article  Google Scholar 

  29. J. Xie, T. Wang, Z. Ren, J. Zhang, L. Quan, Haar wavelet method for approximating the solution of a coupled system of fractional-order integral–differential equations. Math. Comput. Simul. 163, 80–89 (2019)

    Article  Google Scholar 

  30. E. Keshavarz, Y. Ordokhani, M. Razzaghi, Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38(24), 6038–6051 (2014)

    Article  Google Scholar 

  31. S. Kumbinarasaiah, G. Manohara, G. Hariharan, Bernoulli wavelets functional matrix technique for a system of nonlinear singular Lane Emden equations. Math. Comput. Simul. 204, 133–165 (2022)

    Google Scholar 

  32. H.M. Srivastava, F.A. Shah, N.A. Nayied, Fibonacci wavelet method for the solution of the non-linear Hunter-Saxton equation. Appl. Sci. 12(15), 7738 (2022)

    Article  CAS  Google Scholar 

  33. S. Kumbinarasaiah, Hermite wavelets approach for the multi-term fractional differential equations. J. Interdiscip. Math. 24(5), 1241–1262 (2021)

    Article  Google Scholar 

  34. Y. Chen, X. Ke, Y. Wei, Numerical algorithm to solve a system of nonlinear fractional differential equations based on wavelets method and the error analysis. Appl. Math. Comput. 251, 475–488 (2015)

    Google Scholar 

  35. A. Secer, S. Altun, A new operational matrix of fractional derivatives to solve systems of fractional differential equations via Legendre wavelets. Mathematics 6(11), 238 (2018)

    Article  Google Scholar 

  36. F. Mohammadi, C. Cattani, A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations. J. Comput. Appl. Math. 339, 306–316 (2018)

    Article  Google Scholar 

  37. L.I. Yuanlu, Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2284–2292 (2010)

    Article  Google Scholar 

  38. M. ur Rehman, U. Saeed, Gegenbauer wavelets operational matrix method for fractional differential equations. J. Korean Math. Soc. 52(5), 1069–1096 (2015)

    Article  Google Scholar 

  39. D.Q. Dai, W. Lin, Orthonormal polynomial wavelets on the interval. Proc. Am. Math. Soc. 134(5), 1383–1390 (2006)

    Article  Google Scholar 

  40. T. Kilgore, J. Prestin, Polynomial wavelets on the interval. Constr. Approx. 12, 95–110 (1996)

    Article  Google Scholar 

  41. F.A. Shah, M. Irfan, K.S. Nisar, R.T. Matoog, E.E. Mahmoud, Fibonacci wavelet method for solving time-fractional telegraph equations with Dirichlet boundary conditions. Results Phys. 24, 104123 (2021)

    Article  Google Scholar 

  42. S. Kumbinarasaiah, M. Mulimani, A novel scheme for the hyperbolic partial differential equation through Fibonacci wavelets. J. Taibah Univ. Sci. 16(1), 1112–1132 (2022)

    Article  Google Scholar 

  43. S. Sabermahani, Y. Ordokhani, S.A. Yousefi, Fibonacci wavelets and their applications for solving two classes of time-varying delay problems. Optim. Control Appl. Methods 41(2), 395–416 (2020)

    Article  Google Scholar 

  44. S. Kumbinarasaiah, M. Mulimani, Fibonacci wavelets approach for the fractional Rosenau-Hyman equations. Results Control Optim. 11, 100221 (2023)

    Article  Google Scholar 

  45. M. Kumar, K.N. Rai, Numerical simulation of time-fractional bioheat transfer model during cryosurgical treatment of skin cancer. Comput. Therm. Sci.13(4) (2021)

  46. S. Kumbinarasaiah, M. Mulimani, Fibonacci wavelets-based numerical method for solving fractional order (1+1)-dimensional dispersive partial differential equation. Int. J. Dyn. Control 1–24 (2023)

  47. W.M. Abd-Elhameed, Y.H. Youssri, A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: spectral solutions of fractional differential equations. Entropy 18(10), 345 (2016)

    Article  Google Scholar 

  48. S.C. Shiralashetti, L. Lamani, Fibonacci wavelet-based numerical method for solving nonlinear Stratonovich Volterra integral equations. Sci. Afr. 10, e00594 (2020)

    Google Scholar 

  49. S. Abdi-Mazraeh, H. Kheiri, S. Irandoust-Pakchin, Construction of operational matrices based on linear cardinal B-spline functions for solving fractional stochastic integro-differential equation. J. Appl. Math. Comput. 1–25 (2021)

  50. S. Irandoust-pakchin, M. Dehghan, S. Abdi-mazraeh, M. Lakestani, Numerical solution for a class of fractional convection–diffusion equations using the flatlet oblique multiwavelets. J. Vib. Control 20(6), 913–924 (2014)

    Article  Google Scholar 

  51. M.V. Salehian, S. Abdi-mazraeh, S. Irandoust-pakchin, N. Rafati, Numerical solution of Fokker-Planck equation using the flatlet oblique multiwavelets. Int. J. Nonlinear Sci. 13(4), 387–395 (2012)

    Google Scholar 

  52. M. Lakestani, M. Dehghan, S. Irandoust-Pakchin, The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1149–1162 (2012)

    Article  Google Scholar 

  53. M. Kumar, S. Pandit, Wavelet transform and wavelet based numerical methods: an introduction. Int. J. Nonlinear Sci. 13(3), 325–345 (2012)

    Google Scholar 

  54. S. Kumbinarasaiah, G. Manohara, Modified Bernoulli wavelets functional matrix approach for the HIV infection of CD4+ T cells model. Results Control Optim. 10, 100197 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Kumbinarasaiah S expresses his affectionate thanks to the DST-SERB, Govt. of India. New Delhi for the financial support under Empowerment and Equity Opportunities for Excellence in Science for 2023–2026. F. No. EEQ/2022/620 Dated: 07/02/2023.

Funding

The author states that no funding is involved.

Author information

Authors and Affiliations

Authors

Contributions

KS proposed the main idea of this paper. KS and MG prepared the manuscript and performed all the steps of the proofs in this research. Both authors contributed equally and significantly to writing this paper. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Kumbinarasaiah.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manohara, G., Kumbinarasaiah, S. Fibonacci wavelet collocation method for the numerical approximation of fractional order Brusselator chemical model. J Math Chem (2023). https://doi.org/10.1007/s10910-023-01521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10910-023-01521-4

Keywords

Mathematics Subject Classification

Navigation