Skip to main content
Log in

Symmetry-adapted formulation of the hybrid treatment resulting from the G-particle-hole Hypervirial equation and equations of motion methods: a procedure for modeling solids

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Highly accurate electron affinities and ionization potentials of chemical systems were described by means of the procedure called GHV-EOM (Valdemoro et al, in Int J Quantum Chem 112:2965, 2012), which combines the G-particle-hole hypervirial (GHV) equation method (Alcoba et al, in Int J Quantum Chem 109:3178, 2009) and that of the equations-of-motion (EOM), by Simons and Smith (Simons and Smith, in J Chem Phys 58:4899, 1973). The present work improves that hybrid method by introducing the point group symmetry within its framework, providing a higher computational efficiency. We report results which show the achievements attained by using the symmetry-adapted methodology. The new formulation turns out to be particularly suitable for characterizing solid models, as cyclic one-dimensional chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.J. Coleman, Rev. Mod. Phys. 35, 668 (1963)

    Article  Google Scholar 

  2. E.R. Davidson, Reduced Density Matrices in Quantum Chemistry (Academic Press, New York, 1976)

    Google Scholar 

  3. A.J. Coleman, V.I. Yukalov, Reduced Density Matrices: Coulson’s Challenge (Springer, New York, 2000)

    Book  Google Scholar 

  4. Many-electron Densities and Reduced Density Matrices, ed. by J. Cioslowski (Kluwer, Dordrecht, The Netherlands, 2000)

  5. Advances in Chemical Physics, ed. by D.A. Mazziotti, Vol. 134 (Wiley, New York, 2007)

  6. C. Garrod, J.K. Percus, J. Math. Phys. 5, 1756 (1964)

    Article  CAS  Google Scholar 

  7. H. Nakatsuji, Phys. Rev. A 14, 41 (1976)

    Article  CAS  Google Scholar 

  8. J. Karwowski, W. Duch, C. Valdemoro, Phys. Rev. A 33, 2254 (1986)

    Article  CAS  Google Scholar 

  9. L. Lain, A. Torre, J. Karwowski, C. Valdemoro, Phys. Rev. A 38, 2721 (1988)

    Article  CAS  Google Scholar 

  10. H. Nakatsuji, K. Yasuda, Phys. Rev. Lett. 76, 1039 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. C. Valdemoro, L.M. Tel, E. Pérez-Romero, A. Torre, J. Mol. Struct. (Theochem) 537, 1 (2001)

    Article  CAS  Google Scholar 

  12. D.A. Mazziotti, Chem. Rev. 112, 244 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. D.R. Alcoba, C. Valdemoro, L.M. Tel, E. Pérez-Romero, Int. J. Quantum Chem. 109, 3178 (2009)

    Article  CAS  Google Scholar 

  14. D.A. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006)

    Article  PubMed  CAS  Google Scholar 

  15. C. Valdemoro, D.R. Alcoba, L.M. Tel, E. Pérez-Romero, Int. J. Quantum Chem. 109, 2622 (2009)

    Article  CAS  Google Scholar 

  16. D.R. Alcoba, L.M. Tel, E. Pérez-Romero, C. Valdemoro, Int. J. Quantum Chem. 111, 937 (2011)

    Article  CAS  Google Scholar 

  17. D.R. Alcoba, C. Valdemoro, L.M. Tel, E. Pérez-Romero, O.B. Oña, J. Phys. Chem. A 115, 2599 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. C. Valdemoro, D.R. Alcoba, O.B. Oña, L.M. Tel, E. Pérez-Romero, J.M. Oliva, Chem. Phys. 399, 59 (2012)

    Article  CAS  Google Scholar 

  19. J. Simons, W.D. Smith, J. Chem. Phys. 58, 4899 (1973)

    Article  CAS  Google Scholar 

  20. C. Valdemoro, D.R. Alcoba, L.M. Tel, Int. J. Quantum Chem. 112, 2965 (2012)

    Article  CAS  Google Scholar 

  21. G.E. Massaccesi, D.R. Alcoba, O.B. Oña, J. Math. Chem. 50, 2155 (2012)

    Article  CAS  Google Scholar 

  22. D.R. Alcoba, G.E. Massaccesi, O.B. Oña, J.J. Torres-Vega, L. Lain, A. Torre, J. Math. Chem. 52, 1794 (2014)

    Article  CAS  Google Scholar 

  23. A.V. Sinitskiy, L. Greenman, D.A. Mazziotti, J. Chem. Phys. 133, 014104 (2010)

    Article  PubMed  CAS  Google Scholar 

  24. M. Motta, D.M. Ceperley, G. Kin-Lic Chan, J.A. Gomez, E. Gull, S. Guo, C.A. Jiménez-Hoyos, T.N. Lan, J. Li, F. Ma, A.J. Millis, N.V. Prokof’ev, U. Ray, G.E. Scuseria, S. Sorella, E.M. Stoudenmire, Q. Sun, I.S. Tupitsyn, S.R. White, D. Zgid, S. Zhang, Phys. Rev. X 7, 031059 (2017)

    Google Scholar 

  25. R. Quintero-Monsebaiz, I. Mitxelena, M. Rodríguez-Mayorga, A. Vela, M. Piris, J. Phys.: Condens. Matter 31, 165501 (2019)

    CAS  Google Scholar 

  26. I. Mitxelena, M. Piris, J. Phys.: Condens. Matter 32, 17LT01 (2020)

    CAS  Google Scholar 

  27. M. Motta, C. Genovese, F. Ma, Z.H. Cui, R. Sawaya, G. Kin-Lic Chan, N. Chepiga, P. Helms, C. Jiménez-Hoyos, A.J. Millis, U. Ray, E. Ronca, H. Shi, S. Sorella, E.M. Stoudenmire, S.R. White, S. Zhang, Phys. Rev. X 10, 031058 (2020)

    CAS  Google Scholar 

  28. P.R. Surjan, Second Quantized Approach to Quantum Chemistry: An Elementary Introduction (Springer, Berlin, 1989)

    Book  Google Scholar 

  29. M.V. Mihailovic, M. Rosina, Nucl. Phys. A 130, 386 (1969)

    Article  Google Scholar 

  30. D.R. Alcoba, C. Valdemoro, Phys. Rev. A 64, 062105 (2001)

    Article  CAS  Google Scholar 

  31. F. Colmenero, C. Pérez del Valle, C. Valdemoro, Phys. Rev. A 47, 971 (1993)

    Article  CAS  PubMed  Google Scholar 

  32. D.A. Mazziotti, Phys. Rev. A 60, 3618 (1999)

    Article  CAS  Google Scholar 

  33. C. Valdemoro, L. M. Tel, E. Pérez-Romero, in it Many-electron Densities and Density Matrices, ed. by J. Cioslowski (Kluwer, Boston, 2000)

  34. D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

    Article  Google Scholar 

  35. D.J. Rowe, Nuclear Collective Motion Models and Theory (Methuen and Co., London, 1970)

    Google Scholar 

  36. Z. Szekeres, A. Szabados, M. Kállay, P.R. Surjan, Phys. Chem. Chem. Phys. 3, 696 (2001)

    Article  CAS  Google Scholar 

  37. J. Simons, Adv. Quantum Chem. 50, 213 (2005)

    Article  CAS  Google Scholar 

  38. D.A. Mazziotti, Phys. Rev. A 68, 052501 (2003)

    Article  CAS  Google Scholar 

  39. J.D. Farnum, D.A. Mazziotti, Chem. Phys. Lett. 400, 90 (2004)

    Article  CAS  Google Scholar 

  40. S. Hemmatiyan, M. Sajjan, A.W. Schlimgen, D.A. Mazziotti, J. Phys. Chem. Lett. 9, 5373 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. L.M. Tel, E. Pérez-Romero, F.J. Casquero, C. Valdemoro, Phys. Rev. A 67, 052504 (2003)

    Article  CAS  Google Scholar 

  42. M. Springborg, Methods of Electronic-Structure Calculations: From Molecules to Solids (Wiley, New York, 2000)

    Google Scholar 

  43. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, Florida, 1976)

    Google Scholar 

  44. H.J. Monkhorst, Phys. Rev. B 20, 1504 (1979)

    Article  CAS  Google Scholar 

  45. V. Bezugly, U. Birkenheuer, Chem. Phys. Lett. 399, 57 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the Grant Nos. UBACYT 20020150100157BA, 20020190100214BA, and 20020170100284BA (Universidad de Buenos Aires, Argentina); Grants Nos. PIP 11220130100377CO, PIP 11220130100311CO, and 2013-1401PCB (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina); Grant Nos. PICT-201-0381 and PICT-2018-04536 (Agencia Nacional de Promoción Científica y Tecnológica, Argentina); Grant No. 1181165 (FONDECYT, Chile). E. R. and J. J. T. acknowledge support to Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina) and Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales (Perú), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego R. Alcoba.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Vega, J.J., Massaccesi, G.E., Ríos, E. et al. Symmetry-adapted formulation of the hybrid treatment resulting from the G-particle-hole Hypervirial equation and equations of motion methods: a procedure for modeling solids. J Math Chem 59, 488–504 (2021). https://doi.org/10.1007/s10910-020-01208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01208-0

Keywords

Navigation