Skip to main content
Log in

Nice pairs of odd cycles in fullerene graphs

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Let G be a graph with a perfect matching. A subgraph H of G is nice if \(G - V(H)\) still has a perfect matching. In a chemical context, nice subgraphs of molecular graphs serve as mathematical models of addition patterns in the corresponding molecules such that the rest of the molecule still has a resonant structure. In this contribution we start from the fact that each fullerene graph has a nice pair of disjoint odd cycles and investigate when one or both cycles in such pairs can be chosen to be pentagons. Along the way we completely settle the analogous problem for closely related generalized fullerenes with only triangular and hexagonal faces. We also report some computational results for small fullerenes and list some open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.J. Austin, P.W. Fowler, P. Hansen, D.E. Monolopoulos, M. Zheng, Fullerene isomers of \(C_{60}\). Kekulé counts versus stability. Chem. Phys. Lett. 228, 478–484 (1994)

    Article  Google Scholar 

  2. M.H. de Carvalho, C.L. Lucchesi, U.S.R. Murty, Optimal ear decomposition of matching covered graphs. J. Comb. Theory Ser. B 85, 59–93 (2002)

    Article  Google Scholar 

  3. M.H. de Carvalho, C.L. Lucchesi, U.S.R. Murty, On a conjecture of Lovász concerning bricks I. The characteristic of a matching covered graph. J. Comb. Theory Ser. B 85, 94–136 (2002)

    Article  Google Scholar 

  4. M.H. de Carvalho, C.L. Lucchesi, U.S.R. Murty, On a conjecture of Lovász concerning bricks II. Bricks of finite characteristic. J. Comb. Theory Ser. B 85, 137–180 (2002)

    Article  Google Scholar 

  5. M.H. de Carvalho, C.L. Lucchesi, U.S.R. Murty, The perfect matching polytope and solid bricks. J. Comb. Theory Ser. B 92, 319–324 (2004)

    Article  Google Scholar 

  6. M.H. de Carvalho, C.L. Lucchesi, U.S.R. Murty, Graphs with independent perfect matchings. J. Graph Theory 48, 19–50 (2005)

    Article  Google Scholar 

  7. M.H. de Carvalho, C.L. Lucchesi, U.S.R. Murty, How to build a brick. Discret. Math. 306, 2383–2410 (2006)

    Article  Google Scholar 

  8. M.V. Diudea, M. Stefu, P.E. John, A. Graovac, Generalized operations on maps. Croat. Chem. Acta 79, 355–362 (2006)

    CAS  Google Scholar 

  9. T. Došlić, On lower bounds of number of perfect matchings in fullerene graphs. J. Math. Chem. 24, 359–364 (1998)

    Article  Google Scholar 

  10. T. Došlić, On some structural properties of fullerene graphs. J. Math. Chem. 31, 187–195 (2002)

    Article  Google Scholar 

  11. T. Došlić, Cyclical edge-connectivity of fullerene graphs and \((k,6)\)-cages. J. Math. Chem. 33, 103–112 (2003)

    Article  Google Scholar 

  12. T. Došlić, Bipartivity of fullerene graphs and fullerene stability. Chem. Phys. Lett. 412, 336–340 (2005)

    Article  CAS  Google Scholar 

  13. T. Došlić, D. Vukičević, Computing the bipartite edge frustration of fullerene graphs. Discret. Appl. Math. 155, 1294–1301 (2007)

    Article  Google Scholar 

  14. T. Došlić, Fullerene graphs with exponentially many perfect matchings. J. Math. Chem. 41, 183–192 (2007)

    Article  CAS  Google Scholar 

  15. Z. Dvořak, B. Lidický, R. Škrekovski, Bipartizing fullerenes. Eur. J. Combin. 33, 1286–1293 (2012)

    Article  Google Scholar 

  16. J. Edmonds, Maximum matching and a polyhedron with \((0,1)\) vertices. J. Res. Nat. Bur. Stand. Sect. B 69B, 125–130 (1965)

    Article  Google Scholar 

  17. L. Esperet, F. Kardoš, A.D. King, D. Král’, S. Norine, Exponentially many perfect matchings in cubic graphs. Adv. Math. 227, 1646–1664 (2011)

    Article  Google Scholar 

  18. P.W. Fowler, J.E. Cremona, J.I. Steer, Systematics of bonding in non-icosahedral carbon clusters. Theor. Chim. Acta 73, 1–26 (1988)

    Article  CAS  Google Scholar 

  19. P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Clarendon Press, Oxford, 1995)

    Google Scholar 

  20. B. Grünbaum, T.S. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra. Can. J. Math. 15, 744–751 (1963)

    Article  Google Scholar 

  21. F. Harary, Graph Theory (Addison-Wesley, Reading, 1969)

    Book  Google Scholar 

  22. F. Kardoš, D. Král’, J. Miškuf, J.-S. Sereni, Fullerene graphs have exponentially many perfect matchings. J. Math. Chem. 46, 443–447 (2009)

    Article  CAS  Google Scholar 

  23. F. Kardoš, R. Škrekovski, Cyclic edge-cuts in fullerene graphs. J. Math. Chem. 44, 121–132 (2008)

    Article  CAS  Google Scholar 

  24. R.B. King, M.V. Diudea, The chirality of icosahedral fullerenes: a comparison of the tripling, (leapfrog), quadrupling (chamfering) and septupling (capra) transformations. J. Math. Chem. 39, 597–604 (2006)

    Article  CAS  Google Scholar 

  25. D.J. Klein, X. Liu, Theorems for carbon cages. J. Math. Chem. 11, 199–205 (1992)

    Article  CAS  Google Scholar 

  26. K. Kutnar, D. Marušič, On cyclic edge-connectivity of fullerenes. Discret. Appl. Math. 156, 1661–1669 (2008)

    Article  Google Scholar 

  27. H. Li, H. Zhang, The isolated-pentagon rule and nice substructures in fullerenes. ARS Math. Contemp. 15, 487–497 (2018)

    Article  Google Scholar 

  28. L. Lovász, M.D. Plummer, Matching Theory (North-Holland, Amsterdam, 1986)

    Google Scholar 

  29. J. Petersen, Die Theorie der regulären graphs. Acta Math. 15, 193–220 (1891)

    Article  Google Scholar 

  30. M.D. Plummer, Extending matchings in graphs: a survey. Discret. Math. 127, 277–292 (1994)

    Article  Google Scholar 

  31. Z. Qi, H. Zhang, A note on the cyclical edge-connectivity of fullerene graphs. J. Math. Chem. 43, 134–140 (2008)

    Article  CAS  Google Scholar 

  32. G. Seifert, P.W. Fowler, D. Mitchell, D. Porezag, T. Frauenheim, Boron–Nitrogen analogues of the fullerenes: electronic and structural properties. Chem. Phys. Lett. 268, 352–358 (1997)

    Article  CAS  Google Scholar 

  33. C. Sun, H. Zhang, On bicriticality of (3,6)-fullerenes. J. Math. Chem. 56, 2785–2793 (2018)

    Article  CAS  Google Scholar 

  34. D. Ye, H. Zhang, On \(k\)-resonant fullerene graphs. SIAM J. Discret. Math. 23, 1023–1044 (2009)

    Article  Google Scholar 

  35. H. Zhang, F. Zhang, New lower bounds on the number of perfect matchings of fullerene graphs. J. Math. Chem. 30, 343–347 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial support of the Croatian Science Foundation via research Project LightMol (Grant No. HRZZ-IP-2016-06-1142) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Došlić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Došlić, T. Nice pairs of odd cycles in fullerene graphs. J Math Chem 58, 2204–2222 (2020). https://doi.org/10.1007/s10910-020-01171-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01171-w

Keywords

Navigation