Skip to main content
Log in

Numerical simulation to study the pattern formation of reaction–diffusion Brusselator model arising in triple collision and enzymatic

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This article studies the pattern formation of reaction–diffusion Brusselator model along with Neumann boundary conditions arising in chemical processes. To accomplish this work, a new modified trigonometric cubic B-spline functions based differential quadrature algorithm is developed which is more general than (Mittal and Jiwari in Appl Math Comput 217(12):5404–5415, 2011; Jiwari and Yuan in J Math Chem 52:1535–1551, 2014). The reaction–diffusion model arises in enzymatic reactions, in the formation of ozone by atomic oxygen via a triple collision, and in laser and plasma physics in multiple couplings between modes. The algorithm converts the model into a system of ordinary differential equations and the obtained system is solved by Runge–Kutta method. To check the precision and performance of the proposed algorithm four numerical problems are contemplated and computed results are compared with the existing methods. The computed results pamper the theory of Brusselator model that for small values of diffusion coefficient, the steady state solution converges to equilibrium point \(( {\mu , \lambda /\mu })\) if \(1-\lambda +\mu ^{2}>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond.-Ser. B: Biol. Sci. 237, 37–72 (1952)

    Article  Google Scholar 

  2. R. Lefever, G. Nicolis, Chemical instabilities and sustained oscillations. J. Theor. Biol. 30, 267 (1971)

    Article  CAS  Google Scholar 

  3. G. Nicolis, I. Prigogine, Self-Organization in Non-equilibrium Systems (Wiley, New York, 1977)

    Google Scholar 

  4. I. Prigogine, R. Lefever, Symmetries breaking instabilities in dissipative systems II. J. Phys. Chem. 48, 1695–1700 (1968)

    Article  Google Scholar 

  5. J. Tyson, Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys. 58, 3919 (1973)

    Article  CAS  Google Scholar 

  6. P.A. Zegeling, H.P. Kok, Adaptive moving mesh computations for reaction–diffusion systems. J. Comput. Appl. Math. 168, 519–528 (2004)

    Article  Google Scholar 

  7. E.H. Twizell, A.B. Gumel, Q. Cao, A second-order scheme for the Brusselator’ reaction–diffusion system. J. Math. Chem. 26, 297–316 (1999)

    Article  Google Scholar 

  8. G. Adomian, The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)

    Article  Google Scholar 

  9. A.M. Wazwaz, The decomposition method applied to systems of partial differential equations and to the reaction–diffusion Brusselator model. Appl. Math. Comput. 110, 251–264 (2000)

    Google Scholar 

  10. W.T. Ang, The two-dimensional reaction–diffusion Brusselator system: a dual-reciprocity boundary element solution. Eng. Anal. Bound Elem. 27, 897–903 (2003)

    Article  Google Scholar 

  11. Siraj-ul-Islam, A. Ali, S. Haq, A computational modeling of the behavior of the two-dimensional reaction-diffusion Brusselator system. Appl. Math. Model. 34, 3896–3909 (2010)

  12. J.G. Verwer, W.H. Hundsdorfer, B.P. Sommeijer, Convergence properties of the Runge–Kutta–Chebyshev Method. Numer. Math. 57, 157–178 (1990)

    Article  Google Scholar 

  13. S. Kumar, Y. Khan, A. Yildirim, A mathematical modeling arising in the chemical systems and its approximate numerical solution. Asia-Pac. J. Chem. Eng. 7, 835–840 (2012)

    Article  CAS  Google Scholar 

  14. M. Dehghan, M. Abbaszadeh, Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion. Comput. Methods Appl. Mech. Engrg 300, 770–797 (2016)

    Article  Google Scholar 

  15. R.C. Mittal, R. Jiwari, Numerical study of two-dimensional reaction–diffusion Brusselator system. Appl. Math. Comput. 217(12), 5404–5415 (2011)

    Google Scholar 

  16. R. Jiwari, J. Yuan, A computational modeling of two dimensional reaction–diffusion Brusselator system arising in chemical processes. J. Math. Chem. 52, 1535–1551 (2014)

    Article  CAS  Google Scholar 

  17. C. Shu, Differential Quadrature and its Application in Engineering (Athenaeum Press Ltd., Cambridge, 2000)

    Book  Google Scholar 

  18. A. Korkmaz, İ. Dağ, Shock wave simulations using sinc differential quadrature method. Eng. Comput. 28(6), 654–674 (2011)

    Article  Google Scholar 

  19. A. Korkmaz, İ. Dağ, A differential quadrature algorithm for nonlinear Schrödinger equation. Nonlinear Dynam. 56(1–2), 69–83 (2009)

    Article  Google Scholar 

  20. R.C. Mittal, R. Jiwari, Differential quadrature method for two dimensional Burgers’ equations. Int. J. Comput. Methods Eng. Sci. Mech. 10, 450–459 (2009)

    Article  Google Scholar 

  21. R. Jiwari, S. Pandit, R.C. Mittal, Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method. Comput. Phys. Commun. 183(3), 600–616 (2012)

    Article  CAS  Google Scholar 

  22. R. Jiwari, S. Pandit, R.C. Mittal, A differential quadrature algorithm to solve the two dimensional linear hyperbolic equation with Dirichlet and Neumann boundary conditions. Appl. Math. Comput. 218(13), 7279–7294 (2012)

    Google Scholar 

  23. R.C. Mittal, R. Jiwari, A differential quadrature method for numerical solutions of Burgers’-type equations. Int. J. Numer. Methods Heat Fluid Flow 22(7), 880–895 (2012)

    Article  Google Scholar 

  24. M. Dehghan, A. Nikpour, Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method. Appl. Math. Model. 37(18–19), 8578–8599 (2013)

    Article  Google Scholar 

  25. M.A. De Rosaa, M. Lippiello, R. Jiwari, S. Tomasiello, A Differential Quadrature based procedure for parameter identification. Appl. Math. Comput. 290, 460–466 (2016)

    Google Scholar 

  26. A. Alshomrani, S. Pandit, A.K. Alzahrani, M.S. Alghamdi, R. Jiwari, A numerical algorithm based on modified cubic trigonometric B-spline functions for computational modelling of hyperbolic type wave equations. Eng. Comput. 34(4), 1257–1276 (2017)

    Article  Google Scholar 

  27. R. Jiwari, Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions. Comput. Phys. Commun. 193, 55–65 (2015)

    Article  CAS  Google Scholar 

  28. R.C. Mittal, R. Rohila, Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method. Chaos Solitons Fract. 92, 9–19 (2016)

    Article  Google Scholar 

  29. R. Jiwari, S. Singh, A. Kumar, Numerical simulation to capture the pattern formation of coupled reaction-diffusion models. Chaos Solitons Fract. 103, 422–439 (2017)

    Article  Google Scholar 

  30. M. Sun, Y. Tan, L. Chen, Dynamical behaviors of the brusselator system with impulsive input. J. Math. Chem. 44(3), 637–649 (2008)

    Article  CAS  Google Scholar 

  31. A.B. Gumel, W.F. Langford, E.H. Twizell, J. Wu, Numerical solutions for a coupled non-linear oscillator. J. Math. Chem. 28(4), 325–340 (2000)

    Article  CAS  Google Scholar 

  32. S. Kumar, Y. Khan, A. Yaldirim, A mathematical modeling arising in the chemical systems and its approximate numerical solution. Asia-Pac. J. Chem. Eng. 7(6), 835–840 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aisha M. Alqahtani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, A.M. Numerical simulation to study the pattern formation of reaction–diffusion Brusselator model arising in triple collision and enzymatic. J Math Chem 56, 1543–1566 (2018). https://doi.org/10.1007/s10910-018-0859-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0859-8

Keywords

Navigation