Skip to main content
Log in

Progress Toward Detection of Individual TLS in Nanomechanical Resonators

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The low-temperature properties of amorphous solids are usually explained in terms of atomic-scale tunneling two level systems (TLS). For almost 20 years, individual TLS have been probed in insulating layers of superconducting quantum circuits. Detecting individual TLS in mechanical systems has been proposed but not definitively demonstrated. We describe an optomechanical system that is appropriate for this goal and describe our progress toward achieving it. In particular, we show that the expected coupling between the mechanical mode and a resonant TLS is strong enough for high visibility of a TLS given the linewidth of the mechanical mode. Furthermore, the electronic noise level of our measurement system is low enough, and the anomalous force noise observed in other nanomechanical devices is absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.C. Zeller, R.O. Pohl, Thermal conductivity and specific heat of noncrystalline solids. Phys. Rev. B 4(6), 2029–2041 (1971). https://doi.org/10.1103/PhysRevB.4.2029

    Article  ADS  Google Scholar 

  2. W.A. Phillips, Two-level states in glasses. Rep. Prog. Phys. 50(12), 1657–708 (1987). https://doi.org/10.1088/0034-4885/50/12/003

    Article  ADS  CAS  Google Scholar 

  3. P.W. Anderson, B.I. Halperin, C.M. Varma, Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag. 25, 1 (1972)

    Article  ADS  CAS  Google Scholar 

  4. W.A. Phillips, Tunneling states in amorphous solids. J. Low Temp. Phys. 7, 351 (1972)

    Article  ADS  CAS  Google Scholar 

  5. A.D. Fefferman, R.O. Pohl, A.T. Zehnder, J.M. Parpia, Acoustic properties of amorphous silica between 1 and 500 mk. Phys. Rev. Lett. 100(19), 195501 (2008). https://doi.org/10.1103/PhysRevLett.100.195501

    Article  ADS  CAS  PubMed  Google Scholar 

  6. B.E. White, R.O. Pohl, Internal friction of subnanometer a-si\({\rm o }_{2}\) films. Phys. Rev. Lett. 75, 4437–4439 (1995). https://doi.org/10.1103/PhysRevLett.75.4437

    Article  ADS  CAS  PubMed  Google Scholar 

  7. K. Agarwal, I. Martin, M.D. Lukin, E. Demler, Polaronic model of two-level systems in amorphous solids. Phys. Rev. B 87, 144201 (2013). https://doi.org/10.1103/PhysRevB.87.144201

    Article  ADS  CAS  Google Scholar 

  8. R.W. Simmonds, K.M. Lang, D.A. Hite, S. Nam, D.P. Pappas, J.M. Martinis, Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004). https://doi.org/10.1103/PhysRevLett.93.077003

    Article  ADS  CAS  PubMed  Google Scholar 

  9. J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, C.C. Yu, Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005). https://doi.org/10.1103/PhysRevLett.95.210503

    Article  ADS  CAS  PubMed  Google Scholar 

  10. M. Neeley, M. Ansmann, R.C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A.N. Cleland, J.M. Martinis, Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523 (2008)

    Article  CAS  Google Scholar 

  11. J. Lisenfeld, C. Müller, J.H. Cole, P. Bushev, A. Lukashenko, A. Shnirman, A.V. Ustinov, Measuring the temperature dependence of individual two-level systems by direct coherent control. Phys. Rev. Lett. 105, 230504 (2010). https://doi.org/10.1103/PhysRevLett.105.230504

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Y. Shalibo, Y. Rofe, D. Shwa, F. Zeides, M. Neeley, J.M. Martinis, N. Katz, Lifetime and coherence of two-level defects in a Josephson junction. Phys. Rev. Lett. 105, 177001 (2010). https://doi.org/10.1103/PhysRevLett.105.177001

    Article  ADS  CAS  PubMed  Google Scholar 

  13. X. Wen, B. Mao, J. Chen, Y. Yu, P. Wu, S. Han, Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system. Nat. Commun. 1, 51 (2010)

    Article  ADS  PubMed  Google Scholar 

  14. J. Lisenfeld, G.J. Grabovskij, C. Müller, J.H. Cole, G. Weiss, A.V. Ustinov, Observation of directly interacting coherent two-level systems in an amorphous material. Nat. Commun. 6, 6182 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. G.J. Grabovskij, T. Peichl, J. Lisenfeld, G. Weiss, A.V. Ustinov, Strain tuning of individual atomic tunneling systems detected by a superconducting qubit. Science 338, 232 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. C. Müller, J.H. Cole, J. Lisenfeld, Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. Rep. Prog. Phys. 82(12), 124501 (2019)

    Article  ADS  PubMed  Google Scholar 

  17. P. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends, K. Arya, B. Chiaro, Y. Chen et al., Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett. 121(9), 090502 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. F. Arute, K. Arya, R. Babbush, D. Bacon, J.C. Bardin, R. Barends, R. Biswas, S. Boixo, F.G. Brandao, D.A. Buell et al., Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. R.O. Pohl, X. Liu, E. Thompson, Low-temperature thermal conductivity and acoustic attenuation in amorphous solids. Rev. Mod. Phys. 74(4), 991 (2002). https://doi.org/10.1103/RevModPhys.74.991

    Article  ADS  CAS  Google Scholar 

  20. D. Natelson, D. Rosenberg, D.D. Osheroff, Evidence for growth of collective excitations in glasses at low temperatures. Phys. Rev. Lett. 80, 4689–4692 (1998). https://doi.org/10.1103/PhysRevLett.80.4689

    Article  ADS  CAS  Google Scholar 

  21. B. Hauer, P. Kim, C. Doolin, F. Souris, J. Davis, Two-level system damping in a quasi-one-dimensional optomechanical resonator. Phys. Rev. B 98(21), 214303 (2018)

    Article  ADS  CAS  Google Scholar 

  22. O. Maillet, D. Cattiaux, X. Zhou, R.R. Gazizulin, O. Bourgeois, A.D. Fefferman, E. Collin, Nanomechanical damping via electron-assisted relaxation of two-level systems. Phys. Rev. B 107(6), 064104 (2023)

    Article  ADS  CAS  Google Scholar 

  23. T. Kamppinen, J. Mäkinen, V. Eltsov, Dimensional control of tunneling two-level systems in nanoelectromechanical resonators. Phys. Rev. B 105(3), 035409 (2022)

    Article  ADS  CAS  Google Scholar 

  24. L.G. Remus, M.P. Blencowe, Y. Tanaka, Damping and decoherence of a nanomechanical resonator due to a few two-level systems. Phys. Rev. B 80, 174103 (2009). https://doi.org/10.1103/PhysRevB.80.174103

    Article  ADS  CAS  Google Scholar 

  25. T. Ramos, V. Sudhir, K. Stannigel, P. Zoller, T.J. Kippenberg, Nonlinear quantum optomechanics via individual intrinsic two-level defects. Phys. Rev. Lett. 110, 193602 (2013). https://doi.org/10.1103/PhysRevLett.110.193602

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Bozkurt, A., Zhao, H., Joshi, C., LeDuc, H.G., Day, P.K., Mirhosseini, M.: A quantum electromechanical interface for long-lived phonons. Nat. Phys., 1–7 (2023)

  27. A.D. Fefferman, R.O. Pohl, J.M. Parpia, Elastic properties of polycrystalline al and ag films down to 6 mk. Phys. Rev. B 82, 064302 (2010). https://doi.org/10.1103/PhysRevB.82.064302

    Article  ADS  CAS  Google Scholar 

  28. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  29. D. Cattiaux, I. Golokolenov, S. Kumar, M. Sillanpää, L. Lépinay, R. Gazizulin, X. Zhou, A. Armour, O. Bourgeois, A. Fefferman et al., A macroscopic object passively cooled into its quantum ground state of motion beyond single-mode cooling. Nat. Commun. 12(1), 6182 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. X. Zhou, D. Cattiaux, R. Gazizulin, A. Luck, O. Maillet, T. Crozes, J.-F. Motte, O. Bourgeois, A. Fefferman, E. Collin, On-chip thermometry for microwave optomechanics implemented in a nuclear demagnetization cryostat. Phys. Rev. Appl. 12(4), 044066 (2019)

    Article  ADS  CAS  Google Scholar 

  31. I. Golokolenov, A. Ranadive, L. Planat, M. Esposito, N. Roch, X. Zhou, A. Fefferman, E. Collin, Thermodynamics of a single mesoscopic phononic mode. Phys. Rev. Res. 5(1), 013046 (2023)

    Article  CAS  Google Scholar 

  32. J.D. Teufel, D. Li, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, R.W. Simmonds, Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Kumar, S.: Low temperature microwave optomechanics: anomalous force noise and optomechanically induced transparency. PhD thesis, Univ. Grenoble Alpes (2021). https://theses.hal.science/tel-03465023

Download references

Acknowledgements

We acknowledge support from the European Research Council under StG UNIGLASS Grant No. 714692 (A.F.) The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation program, under Grant No. 824109, the European Microkelvin Platform. We acknowledge the facilities and technical support of Otaniemi research infrastructure for Micro and Nanotechnologies (OtaNano) (M.S.). This work was supported by the Academy of Finland (contracts 352189, 352932, and 336810) (M.S.), and by the European Research Council (contract 101019712) (M.S.), and by the QuantERA II Program (contract 13352189) (M.S.).

Author information

Authors and Affiliations

Authors

Contributions

R.P. and I.G. upgraded the measurement system, made the measurements and analyzed the data. M.S. and L.M. de L. designed and fabricated the sample. A.F. designed the experiment. A.F. and E.C. supervised the work. A.F. wrote the manuscript text and all authors reviewed the manuscript.

Corresponding author

Correspondence to Andrew Fefferman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (avi 38536 KB)

Supplementary file 2 (avi 540799 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedurand, R., Golokolenov, I., Sillanpää, M. et al. Progress Toward Detection of Individual TLS in Nanomechanical Resonators. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03072-7

Keywords

Navigation