Skip to main content
Log in

Magnetic Field Effect on the Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubits

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Under a strong electron-LO-phonon coupling in asymmetric Gaussian confinement potential quantum wells (AGCPQWs) when exposed to external magnetic fields, the AGCPQW qubit coherent time can be obtained from Fermi's golden rule and the variational method of Pekar type. We have calculated the coherence times of two-level quantum systems in RbCl AGCPQWs in external magnetic fields with varying with cyclotron frequency of magnetic field, confinement potential range (CPR), AGCPQW height, oscillating frequency and polaron radius were theoretically calculated. Based on the numerical results, we found that the coherence time was increased by decreasing magnetic field cyclotron frequency, AGCPQW height, oscillating frequency and polaron radius. Also, the coherence time was decreased with CPR for \(R < 0.7{\text{nm}}\) and increased for \(R > 0.7{\text{nm}}\), with minimum value at \(R = 0.7{\text{nm}}\), \(\omega_{c} = 10 \times 10^{13} {\text{Hz}}\) and \(\tau = 409.9{\text{ps}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.D. Popp, R.B. Murray, J. Phys. Chem. Solids 33, 601 (1972)

    Article  ADS  Google Scholar 

  2. D.D. Awschalom, M.R. Freeman, N. Samarth et al., Phys. Rev. Lett. 66, 1212 (1991)

    Article  ADS  Google Scholar 

  3. I.A. Akimov, T. Godde, K.V. Kavokin et al., Phys. Rev. B 95, 155303 (2017)

    Article  ADS  Google Scholar 

  4. L. Dinh, H.V. Phuc, Superlattice. Microst. 86, 111 (2015)

    Article  ADS  Google Scholar 

  5. R. Khordad, S. Goudarzi, H. Bahramiyan, Indian J. Phys. 90, 659 (2016)

    Article  ADS  Google Scholar 

  6. Y. Sun, J.-L. Xiao, J. Nanophotonics 12, 046004 (2018)

    Article  ADS  Google Scholar 

  7. B. Donfack, F. Fotio, A.J. Fotue et al., Chinese J. Phys. 66, 573 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  8. B. Donfack, F. Fotio, A.J. Fotue, Eur. Phy. J. Plus 136, 1 (2021)

    Article  Google Scholar 

  9. B. Donfack, A. J. Fotue, J. Low Tem. Phys. (2021) 1

  10. R. Khordad, A. Firoozi, H.R.R. Sedehi, J. Low Tem. Phys. 202, 185 (2021)

    Article  ADS  Google Scholar 

  11. R. Khordad, B. Mirhosseini, M.M. Mirhosseini, J. Low Temp. Phys. 197, 95 (2019)

    Article  ADS  Google Scholar 

  12. R. Khordad, H. Bahramiyan, Opt. Quan. Electron. 47, 2727 (2015)

    Article  Google Scholar 

  13. R. Khordad, Opt. Quan. Electron. 48, 251 (2016)

    Article  Google Scholar 

  14. H.R. Sedehi, R. Khordad, Indian J. Phy. 94, 605 (2020)

    Article  ADS  Google Scholar 

  15. Y. Sun, X. Miao, Z. Ding et al., J. Semiconduct. 38, 042002 (2017)

    Article  ADS  Google Scholar 

  16. J.L. Xiao, In. J. Theor. Phys. 55, 147 (2016)

    Article  Google Scholar 

  17. C.Y. Cai, C.L. Zhao, J.L. Xiao, Commun. Theor. Phys. 63, 159 (2015)

    Article  ADS  Google Scholar 

  18. W. Xiao, B. Qi, J.L. Xiao, J. Low. Temp. Phys. 179, 166 (2015)

    Article  ADS  Google Scholar 

  19. J.L. Xiao, Superlattice. Microst. 135, 106279 (2019)

    Article  Google Scholar 

  20. L.D. Landau, S.I. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946)

    Google Scholar 

  21. S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)

    MATH  Google Scholar 

  22. Z.H. Ding, Y. Sun, J.L. Xiao, Int. J. Quantum. Inf. 10, 1250077 (2012)

    Article  MathSciNet  Google Scholar 

  23. W. Xiao, J.L. Xiao, Superlatt. Microstruct. 52, 851 (2012)

    Article  ADS  Google Scholar 

  24. J.L. Xiao, Superlatt. Microstruct. 90, 308 (2016)

    Article  ADS  Google Scholar 

  25. L. D. Landau, E. M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory). London, 1987

  26. J.T. Devreese, Polarons in ionic crystals and polar semiconductors (North-Holland Publ. Co., Amsterdam, 1972)

    Google Scholar 

  27. B. Hackens, S. Faniel, C. Gustin, X. Wallart, S. Bollaert, A. Cappy, V. Bayot, Phys. Rev. Lett. 94, 146802 (2005)

    Article  ADS  Google Scholar 

  28. J. Hackmann, P.H. Glasenapp, A. Greilich, M. Bayer, F.B. Anders, Phys. Rev. Lett. 115, 207401 (2015)

    Article  ADS  Google Scholar 

  29. X.Z. Yuan, K.D. Zhu, W.S. Li, Eur. Phys. J. D. 31, 499 (2004)

    Article  ADS  Google Scholar 

  30. J. Wiersig, Phys. Status Solidi B. 248, 883 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation of China under Grant No.11464033 and Natural Science Foundation of Inner Mongolia Autonomous Region of China under Grant No. 2019MS01008 and No. 2018LH01003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, LQ., Qiu, W., Ma, XJ. et al. Magnetic Field Effect on the Coherence Time of Asymmetric Gaussian Confinement Potential Quantum Well Qubits. J Low Temp Phys 206, 191–198 (2022). https://doi.org/10.1007/s10909-021-02651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02651-2

Keywords

Navigation