Skip to main content
Log in

Influence of Topological Phase Transition on Entanglement in the Spin-1 Antiferromagnetic XX Model in Two Dimensions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the von Neumann entanglement entropy as a measure of the quantum entanglement in the spin-1 two-dimensional XX model with single-ion anisotropy. We use the bond operator formalism and consider the range of large anisotropy D and in the neighborhood of the critical point \(D_\mathrm{c}\) . One discusses the influence of the Berezinskii–Kosterlitz–Thouless phase transition (BKT) that occurs at critical anisotropy point \(D_\mathrm{c}\), or the transition of the topological order of vortices and disordered phase on quantum entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973)

    Article  ADS  Google Scholar 

  2. V.L. Berezinskii, Sov. Phys. JETP 32, 493 (1971)

  3. H.-T. Wang, Y. Wang, Phys. Rev. B 71, 104429 (2005)

    Article  ADS  Google Scholar 

  4. A.S.T. Pires, L.S. Lima, M.E. Gouvea, J. Phys.: Condens. Matter 20, 015208 (2008)

    ADS  Google Scholar 

  5. A.S.T. Pires, Phys. A 437, 198 (2015)

    Article  MathSciNet  Google Scholar 

  6. A.S.T. Pires, Phys. A 373, 387 (2007)

    Article  MathSciNet  Google Scholar 

  7. A.S.T. Pires, Phys. A 391, 5433 (2012)

    Article  Google Scholar 

  8. A.S.T. Pires, Phys. A 390, 2787 (2011)

    Article  Google Scholar 

  9. A.S.T. Pires, B.V. Costa, Phys. A 388, 3779 (2009)

    Article  MathSciNet  Google Scholar 

  10. P. Minnhagen, P. Olsson, Phys. Rev. B 44, 4503 (1991)

    Article  ADS  Google Scholar 

  11. S.T. Bramwell, P.C.W. Holdsworth, J. Appl. Phys. 75, 5955 (1994)

    Article  ADS  Google Scholar 

  12. K.W. Lee, C.E. Lee, I. Kim, Solid State Commun. 135, 95 (2005)

    Article  ADS  Google Scholar 

  13. T. Roscilde, S. Haas, Phys. Rev. Lett. 99, 047205 (2007)

    Article  ADS  Google Scholar 

  14. T. Roscilde, Phys. Rev. B 74, 144418 (2006)

    Article  ADS  Google Scholar 

  15. Z. Zhang, K. Wierschem, I. Yap, Y. Kato, C.D. Batista, P. Sengupta, Phys. Rev. B 87, 174405 (2013)

    Article  ADS  Google Scholar 

  16. J. Oitmaa, C.J. Hamer, Phys. Rev. B 77, 224435 (2008)

    Article  ADS  Google Scholar 

  17. I. Bengtsson, K. Życzkowski, Geometry of Quantum States an Introduction to Quantum entanglement (Cambridge University Press, New York, 2006)

    Book  Google Scholar 

  18. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  19. A. Einstein, E. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  20. A.F. Kracklauer, J. Mod. Phys. 6, 1961 (2015)

    Article  Google Scholar 

  21. F. Iemini, T.O. Maciel, R.O. Vianna, Phys. Rev. B 92, 075423 (2015)

    Article  ADS  Google Scholar 

  22. F. Iemini, R.O. Vianna, Phys. Rev. A 87, 022327 (2013)

    Article  ADS  Google Scholar 

  23. K.H. Norwich, Phys. A 462, 141 (2016)

    Article  MathSciNet  Google Scholar 

  24. L.S. Lima, J. Mod. Phys. 6, 2231 (2015)

    Article  Google Scholar 

  25. L.S. Lima, Phys. A 483, 239 (2017)

    Article  MathSciNet  Google Scholar 

  26. L.S. Lima, Eur. Phys. J. B 73, 242 (2019)

    Google Scholar 

  27. L.S. Lima, Solid State Commun. 309, 113836 (2020)

    Article  Google Scholar 

  28. L.S. Lima, J. Low Temp. Phys. 198, 241 (2020)

    Article  ADS  Google Scholar 

  29. Z.-X. Luo, H. Yu-Ting, W. Yong-Shi, Phys. Rev. B 94, 075126 (2016)

    Article  ADS  Google Scholar 

  30. G. Salton, B. Swingle, M. Walter, Phys. Rev. D 95, 105007 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. L.S. Lima, A.S.T. Pires, Solid State Commun. 149, 269 (2009)

    Article  ADS  Google Scholar 

  32. L.S. Lima, A.S.T. Pires, J. Phys.: Condens. Matter 19, 436218 (2007)

    Google Scholar 

  33. L.S. Lima, Eur. Phys. J. 86, 99 (2013)

    Article  ADS  Google Scholar 

  34. A.S.T. Pires, Solid State Commun. 209, 18 (2015)

    Article  ADS  Google Scholar 

  35. R.P. Feynman, F.L. Vernon Jr., Ann. Phys. 24, 118 (1963)

    Article  ADS  Google Scholar 

  36. N. Papanicolaou, Nucl. Phys. B 305, 367 (1988)

    Article  ADS  Google Scholar 

  37. S. Sachdev, Quantum Phase Transition, 2nd edn. (Cambridge University Press, Massachusetts, 2011)

    Book  Google Scholar 

  38. D. Petz, Quantum Information Theory and Quantum Statistics (Springer, Budapest, 2008)

    MATH  Google Scholar 

  39. A. Pathak, Elements of Quantum Computation and Quantum Communication (Taylor & Francis, London, 2013), p. 92

    Book  Google Scholar 

  40. P. Calabrense, J. Cardy, Phys. A 504, 31 (2018)

    Article  MathSciNet  Google Scholar 

  41. V. Alba, P. Calabrense, PNAS 114, 7949 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Council for Scientific and Technological Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.S. Influence of Topological Phase Transition on Entanglement in the Spin-1 Antiferromagnetic XX Model in Two Dimensions. J Low Temp Phys 201, 515–525 (2020). https://doi.org/10.1007/s10909-020-02512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02512-4

Keywords

Navigation