Skip to main content
Log in

The Effects of Free Vortex Decay in Quasi-Classical and Ultra-Quantum Turbulence

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Free decay of homogeneous vortex tangle in superfluid has been studied for ultra-quantum and quasi-classical regimes at zero temperature limit. It is found that the decay process is associated with heating by means of phonon generation into the system, even at such a zero temperature limit. An explicit expression for the time evolution of temperature due to the heating has been derived. Such heating affects the motion of vortex strings by (a) decreasing their cyclotron frequencies and (b) shortening their length. This length shortening is a secondary decay process initiated by the primary free decay of vortex tangles. The effect of quasiparticles (phonons) on the wave collapse and energy dissipation of the turbulent states has also been studied through the modulation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Maurer, P. Tabeling, EPL 43, 1 (1998)

    Article  ADS  Google Scholar 

  2. W.F. Vinen, Phys. Rev. B 61, 1410 (2000)

    Article  ADS  Google Scholar 

  3. D. Kivotides, J.C. Vassilicos, D.C. Samuels, C.F. Barenghi, Phys. Rev. Lett. 86, 14 (2001)

    Article  Google Scholar 

  4. A.P. Finne et al., Nature 438, 1022–1025 (2003)

    Article  ADS  Google Scholar 

  5. E. Kozik, B. Svistunov, Phys. Rev. Lett. 92, 3 (2004)

    Article  Google Scholar 

  6. M. Kobayashi, M. Tsubota, Phys. Rev. Lett. 94, 065302 (2005)

    Article  ADS  Google Scholar 

  7. D. Kivotides, Phys. Fluids 26, 105105 (2014)

    Article  ADS  Google Scholar 

  8. S.K. Nemirovskii, Phys. Rep. 524, 85–202 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24, 011301 (2012)

    Article  ADS  Google Scholar 

  10. M. Kobayashi, M. Tsubota, J. Low Temp. Phys. 145, 209–218 (2006)

    Article  ADS  Google Scholar 

  11. W.F. Vinen, Phys. Rev. Lett. 91, 13 (2003)

    Article  Google Scholar 

  12. E. Kozik, B. Svistunov, Phys. Rev. B 77, 060502(R) (2008)

    Article  ADS  Google Scholar 

  13. L. Boue, Phys. Rev. B 84, 064516 (2011)

    Article  ADS  Google Scholar 

  14. J. Salort, B. Chabaud, E. Lévêque, P.E. Roche, EPL 97(3), 34006 (2012)

    Article  ADS  Google Scholar 

  15. A. Marakov, Phys. Rev. B 91, 094503 (2015)

    Article  ADS  Google Scholar 

  16. S. Babuin, Phys. Rev. B 94, 174504 (2016)

    Article  ADS  Google Scholar 

  17. J. Gao, JETP Lett. 103, 10 (2016)

    Article  Google Scholar 

  18. D.C. Samuels, C.F. Barenghi, Phys. Rev. Lett. 81, 20 (1998)

    Article  Google Scholar 

  19. K.W. Schwarz, Phys. Rev. B 38, 2398 (1988)

    Article  ADS  Google Scholar 

  20. H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81, 104511 (2010)

    Article  ADS  Google Scholar 

  21. T.F. Buttke, J. Comput. Phys. 76(2), 301–326 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. R.A. Van Gordera, Phys. Fluids 25, 085101 (2013)

    Article  ADS  Google Scholar 

  23. P.M. Walmsley, A.I. Golov, Phys. Rev. Lett. 100, 24530 (2008)

    Article  Google Scholar 

  24. C.F. Barenghi, D.C. Samuels, G.H. Bauer, R.J. Donnelly, Phys. Fluids 9, 2631 (1997)

    Article  ADS  Google Scholar 

  25. D.H. Wacks, C.F. Barenghi, Phys. Rev. B 84, 184505 (2011)

    Article  ADS  Google Scholar 

  26. W.F. Vinen, Proc. R. Soc. Lond. Ser. A 240, 114 (1957)

    Article  ADS  Google Scholar 

  27. D. Jou, M.S. Mongiovì, Phys. Lett. A 359, 183–186 (2006)

    Article  ADS  Google Scholar 

  28. M.S. Mongiovì, D. Jou, M. Sciacca, Phys. Rev. B 75, 214514 (2007)

    Article  ADS  Google Scholar 

  29. E. Demircan, P. Ao, Q. Niu, Phys. Rev. B 54, 14 (1996)

    Article  Google Scholar 

  30. J.M. Duan, Phys. Rev. B 49, 17 (1984)

    Google Scholar 

  31. N.B. Kopnin, V.M. Vinokur, Phys. Rev. Lett. 81, 18 (1998)

    Article  Google Scholar 

  32. D.P. Arovas, J.A. Freire, Phys. Rev. B 55, 2 (1997)

    Article  Google Scholar 

  33. J.H. Mark, S. Ku, Phys. Rev. Lett. 113, 065301 (2014)

    Article  ADS  Google Scholar 

  34. C.M. Muirhead, W.F. Vinen, R.J. Donnelly, Philos. Trans. R. Soc. Lond. A 311, 1518 (1984)

    Article  Google Scholar 

  35. I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965)

    Google Scholar 

  36. R.W. Whitworth, Proc. R. Soc. Lond. Ser. A 246, 1246 (1958)

    Google Scholar 

  37. E. Demircan, P. Ao, Q. Niu, Phys. Rev. B 54, 14 (1996)

    Article  Google Scholar 

  38. H. Hasimoto, J. Fluid Mech. 22, 471 (1972)

    Google Scholar 

  39. C.I. Epstein, M. Gage, Wave Motion: Theory, Modelling, and Computation (Springer, Berlin, 1987), pp. 15–59

    Book  Google Scholar 

  40. J.J. Rasmussen, K. Rypdal, Phys. Scr. 33, 6 (1986)

    Article  Google Scholar 

  41. G. Fibich, G. Papanicolaou, SIAM J. Appl. Math. 60, 183–240 (1999)

    Article  Google Scholar 

  42. F. Merle, P. Raphael, Ann. Math. 161, 157–222 (2005)

    Article  MathSciNet  Google Scholar 

  43. S.I. Davis, P.C. Hendry, P.V.E. McClintock, Phys. B 280, 43–44 (2000)

    Article  ADS  Google Scholar 

  44. P.C. Hendry, Nature (Lond.) 368, 315 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am indebted to Prof. Rajkumar Roychoudhury, Prof. Manoranjan Khan and Dr. Ashish Adak for many useful discussions regarding this work and to the SERB, Government of India (under Ref. No. EMR/16/004746), for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mitra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, A. The Effects of Free Vortex Decay in Quasi-Classical and Ultra-Quantum Turbulence. J Low Temp Phys 194, 88–98 (2019). https://doi.org/10.1007/s10909-018-2084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2084-z

Keywords

Navigation