Skip to main content

Advertisement

Log in

Microwave SQUID Multiplexing of Metallic Magnetic Calorimeters: Status of Multiplexer Performance and Room-Temperature Readout Electronics Development

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

To our present best knowledge, microwave SQUID multiplexing (\(\mu \)MUXing) is the most suitable technique for reading out large-scale low-temperature microcalorimeter arrays that consist of hundreds or thousands of individual pixels which require a large readout bandwidth per pixel. For this reason, the present readout strategy for metallic magnetic calorimeter (MMC) arrays combining an intrinsic fast signal rise time, an excellent energy resolution, a large energy dynamic range, a quantum efficiency close to \(100\%\) as well as a highly linear detector response is based on \(\mu \)MUXing. Within this paper, we summarize the state of the art in MMC \(\mu \)MUXing and discuss the most recent results. This particularly includes the discussion of the performance of a 64-pixel detector array with integrated, on-chip microwave SQUID multiplexer, the progress in flux ramp modulation of MMCs as well as the status of the development of a software-defined radio-based room-temperature electronics which is specifically optimized for MMC readout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Fleischmann et al., Metallic Magnetic Calorimeters, in Cryogenic Particle Detection, Topics in Applied Physics (Springer, Berlin, 2005)

    Google Scholar 

  2. S.R. Bandler et al., J. Low Temp. Phys. 167, 254–268 (2012)

    Article  ADS  Google Scholar 

  3. D. Hengstler et al., Phys. Scr. T166, 014054 (2015)

    Article  ADS  Google Scholar 

  4. C. Bates et al., J. Low Temp. Phys. 184, 351–354 (2016)

    Article  ADS  Google Scholar 

  5. M. Loidl et al., J. Low Temp. Phys. 151, 1055–1060 (2008)

    Article  ADS  Google Scholar 

  6. L. Gastaldo et al., Eur. Phys. J. Special Topics 226, 1623–1694 (2017)

    Article  ADS  Google Scholar 

  7. J. Clarke et al., The SQUID Handbook (Wiley-VCH, Weinheim, 2004)

    Book  Google Scholar 

  8. K. Irwin et al., Appl. Phys. Lett. 85, 2107–2109 (2004)

    Article  ADS  Google Scholar 

  9. J.A.B. Mates et al., Appl. Phys. Lett. 92, 023514 (2008)

    Article  ADS  Google Scholar 

  10. J. Baselmans, J. Low Temp. Phys. 167, 292–304 (2012)

    Article  ADS  Google Scholar 

  11. S. McHugh et al., Rev. Sci. Instrum. 83, 044702 (2012)

    Article  ADS  Google Scholar 

  12. J.A.B. Mates et al., Appl. Phys. Lett. 111, 062601 (2017)

    Article  ADS  Google Scholar 

  13. J.A.B. Mates et al., J. Low Temp. Phys. 167, 707–712 (2012)

    Article  ADS  Google Scholar 

  14. S. Kempf et al., AIP Adv. 7, 015007 (2017)

    Article  ADS  Google Scholar 

  15. S. Kempf et al., Supercond. Sci. Technol. 30, 065002 (2017)

    Article  ADS  Google Scholar 

  16. E. Hogenauer, IEEE Trans. ASSP 29, 155–162 (1981)

    Article  Google Scholar 

  17. T.J. Genrich et al., US Patent 5,596,609 (1997)

Download references

Acknowledgements

We would like to thank T. Wolf as well as the KIP cleanroom team for technical support during device fabrication. The work was performed in the framework of the DFG research unit FOR2202 (funding under En299/7-1), the European Microkelvin Platform EMP, the Karlsruhe School of Elementary Particle and Astroparticle Physics: Science and Technology (KSETA) as well as Heidelberg Karlsruhe Research Partnership HEiKA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kempf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wegner, M., Karcher, N., Krömer, O. et al. Microwave SQUID Multiplexing of Metallic Magnetic Calorimeters: Status of Multiplexer Performance and Room-Temperature Readout Electronics Development. J Low Temp Phys 193, 462–475 (2018). https://doi.org/10.1007/s10909-018-1878-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1878-3

Keywords

Navigation