Skip to main content
Log in

Vortex Matter in Highly Strained Nb\(_{75}\)Zr\(_{25}\): Analogy with Viscous Flow of Disordered Solids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb\(_{75}\)Zr\(_{25}\) alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the ‘shoving model’. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T\(_C\) superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y.B. Kim, C.F. Hempstead, A.R. Strnad, Phys. Rev. 131, 2486 (1963)

    Article  ADS  Google Scholar 

  2. Y.B. Kim, C.F. Hempstead, A.R. Strnad, Phys. Rev. A 139, 1163 (1965)

    Article  ADS  Google Scholar 

  3. K.A. Müller, M. Takashige, J.G. Bednorz, Phys. Rev. Lett. 58, 1143 (1987)

    Article  ADS  Google Scholar 

  4. M.P.A. Fisher, Phys. Rev. Lett. 62, 1415 (1989)

    Article  ADS  Google Scholar 

  5. Y. Yeshurun, A.P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988)

    Article  ADS  Google Scholar 

  6. M.F. Schmidt, N.E. Israeloff, A.M. Goldman, Phys. Rev. B. 48, 3404 (1993)

    Article  ADS  Google Scholar 

  7. R.C. Budhani, M. Suenaga, D.O. Welch, Solid State Commun. 81, 179 (1992)

    Article  ADS  Google Scholar 

  8. M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988)

    Article  ADS  Google Scholar 

  9. C. Reichhardt, A. van Otterlo, G.T. Zimányi, Phys. Rev. Lett. 84, 1994 (2000)

    Article  ADS  Google Scholar 

  10. T.K. Worthington, M. Fisher, D.A. Huse, J. Toner, A.D. Marwick, T. Zabel, C.A. Feild, F. Holtzberg, Phys. Rev. B 46, 11854 (1992)

    Article  ADS  Google Scholar 

  11. R. Lortz, C. Meingast, A.I. Rykov, S. Tajima, J. Low Temp. Phys 147, 365 (2007)

    Article  ADS  Google Scholar 

  12. D.S. Fisher, M.P.A. Fisher, D.A. Huse, Phys. Rev. B 43, 130 (1991)

    Article  ADS  Google Scholar 

  13. T. Giamarchi, S. Bhattacharya, in High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy, Lecture Notes in Physics, vol. 595, ed. by C. Berthier, L.P. Levy, G. Martinez (Springer, Berlin, 2001), p. 314. And references therein

  14. T. Giamarchi, P. Le Doussal, Phys. Rev. Lett. 72, 1530 (1994)

    Article  ADS  Google Scholar 

  15. T. Giamarchi, P. Le Doussal, Phys. Rev. B 52, 1242 (1995)

    Article  ADS  Google Scholar 

  16. A.I. Larkin, Y.N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979)

    Article  ADS  Google Scholar 

  17. G. Blatter, M.V. Feigel’man, Y.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  18. T. Giamarchi, P. Le Doussal, Phys. Rev. Lett. 76, 3408 (1996)

    Article  ADS  Google Scholar 

  19. P. Le Doussal, T. Giamarchi, Phys. Rev. B 57, 11356 (1998)

    Article  ADS  Google Scholar 

  20. K.M. Ralls, P.W. Heitman, R.M. Rose, J. Less-Common Met. 139, 67 (1988)

    Article  Google Scholar 

  21. E.J. Kramer, J. Appl. Phys. 44, 1360 (1973)

    Article  ADS  Google Scholar 

  22. J.C. Dyre, N.B. Olsen, T. Christensen, Phys. Rev. B 53, 2171 (1996)

    Article  ADS  Google Scholar 

  23. G.K. Williamson, W.H. Hall, Acta. Metall. 1, 22 (1953)

    Article  Google Scholar 

  24. H. Biloni, W.J. Boettinger, in Physical Metallurgy, vol. 1, ed. by R.W. Cahn, P. Haasen, 4th edn. (Elsevier Science B. V., North Holland, 1996), chap. 8

  25. P.E.J. Flewitt, Scripta Metall. 5, 579 (1971)

    Article  Google Scholar 

  26. A. Trampert, Phys. E 13, 1119 (2002)

    Article  Google Scholar 

  27. J.R. Clem, Z. Hao, Phys. Rev. B 48, 13774 (1993)

    Article  ADS  Google Scholar 

  28. O.B. Hyun, Phys. Rev. B 48, 1244 (1993)

    Article  ADS  Google Scholar 

  29. P. Mondal, M. Manekar, R. Kumar, T. Ganguli, S.B. Roy, Appl. Phys. Lett. 92, 052507 (2008)

    Article  ADS  Google Scholar 

  30. C.C. Wang, R. Zeng, X. Xu, S.X. Dou, J. Appl. Phys. 108, 093907 (2010)

    Article  ADS  Google Scholar 

  31. M. Nikolo, X. Shi, E.S. Choi, J. Jiang, J.D. Weiss, E.E. Hellstrom, J. Supercond. Nov. Magn. 27, 2231 (2014)

    Article  Google Scholar 

  32. D.H. Kim, K.E. Gray, R.T. Kampwirth, D.M. McKay, Phys. Rev. B 42, 6249 (1990)

    Article  ADS  Google Scholar 

  33. J.C. Dyre, T. Christensen, N.B. Olsen, J. Non-Cryst, Solids 352, 4635 (2006). doi:10.1016/j.jnoncrysol.2006.02.173

    Google Scholar 

  34. S.L. Liu, H.M. Shao, Z.H. Wang, Supercond. Sci. Technol. 20, 444 (2007)

    Article  ADS  Google Scholar 

  35. J.C. Dyre, N.B. Olsen, Phys. Rev. E 69, 042501 (2004)

    Article  ADS  Google Scholar 

  36. D.R. Nelson, H.S. Seung, Phys. Rev. B 39, 9153 (1989)

    Article  ADS  Google Scholar 

  37. E.H. Brandt, Phys. B 169, 91 (1991)

    Article  ADS  Google Scholar 

  38. E.H. Brandt, Phys. Rev. B 34, 6514 (1986)

    Article  ADS  Google Scholar 

  39. L.D. Cooley, X. Song, J. Jiang, D.C. Larbalestier, T. He, K.A. Regan, R.J. Cava, Phys. Rev. B 65, 214518 (2002)

    Article  ADS  Google Scholar 

  40. L.A. Bonney, T.C. Wills, D.C. Larbalestier, J. Appl. Phys. 77, 6377 (1995)

    Article  ADS  Google Scholar 

  41. D. Dew-Hughes, Philos. Mag. 30, 293 (1974)

    Article  ADS  Google Scholar 

  42. A. Godeke, B. ten Haken, H.H.J. ten Kate, D.C. Larbalestier, Supercond. Sci. Technol. 19, R100 (2006)

    Article  ADS  Google Scholar 

  43. M. Matin, L.S.S. Chandra, M.K. Chattopadhyay, R.K. Meena, R. Kaul, M.N. Singh, A.K. Sinha, S.B. Roy, J. Appl. Phys. 113, 163903 (2013)

    Article  ADS  Google Scholar 

  44. R. Griessen, W. Hai-hu, A.J.J. van Dalen, B. Dam, J. Rector, H.G. Schnack, S. Libbrecht, E. Osquiguil, Y. Bruynseraede, Phys. Rev. Lett. 72, 1910 (1994)

    Article  ADS  Google Scholar 

  45. M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Phys. Rev. Lett. 63, 2303 (1989)

    Article  ADS  Google Scholar 

  46. L. Cesnak, F. Gömöry, P. Kováč, J. Šouc, K. Fröhlich, T. Melišek, G. Hilscher, M. Puttner, T. Holubar, Appl. Supercond. 4, 277 (1996)

    Article  Google Scholar 

  47. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  48. U. Yaron, P.L. Gammel, D.A. Huse, R.N. Kleiman, C.S. Oglesby, E. Bucher, B. Batlogg, D.J. Bishop, K. Mortensen, K. Clausen, C.A. Bolle, F. De La Cruz, Phys. Rev. Lett. 73, 2748 (1994)

    Article  ADS  Google Scholar 

  49. D.S. Fisher, Phys. Rep. 301, 113 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. L. S. Sharath Chandra for help with magnetization measurements, Dr. Ashish Khandelwal for help with current–voltage characteristics, Dr. Tapas Ganguli for help with the X-ray diffraction measurements and Dr. A. K. Srivastava for guidance on the transmission electron microscopy measurements. We also thank the Cryo-engineering and Cryo-module Development Division for the liquid helium used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghmalhar Manekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, J., Manekar, M., Sharma, V.K. et al. Vortex Matter in Highly Strained Nb\(_{75}\)Zr\(_{25}\): Analogy with Viscous Flow of Disordered Solids. J Low Temp Phys 186, 21–43 (2017). https://doi.org/10.1007/s10909-016-1643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1643-4

Keywords

Navigation