Skip to main content
Log in

Influence of Electron Velocity and Hydrogenic Impurity on the Properties of the Bound Magnetopolarons in Quantum Disks in a Magnetic Field

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this article, the influence of the electron velocity, the hydrogenic impurity, and the temperature on the properties of bound magnetopolarons in quantum disks in a magnetic field is studied by using the Lee-Low-Pines-Takda transformation. The results of the numerical calculation indicate that the vibration frequency of bound magnetopolarons \(\lambda \) increases with the increasing resonant frequency of the magnetic field \(\omega _\mathrm{c} \), the electron–LO phonon coupling strength \(\alpha \), the electron velocity u, and the dielectric constant ratio \(\eta \); and decreases with the increasing temperature T and the quantum disks thickness L. The Rashba spin splitting energy of the magnetopolarons \(E_\mathrm{R} (\pm )\) is composed of the Rashba spin splitting energy of the electron in zero magnetic field \(E_{\mathrm{SO}} (\pm )\) and the additional energy \(\Delta E_{\mathrm{R-ph}} \) caused by LO phonon effect. The bound magnetopolarons interaction energy \(E_{\mathrm{e-ph}} \) is composed of the electron–LO phonon interaction energy \(E_{\mathrm{e-ph}}^{\mathrm{(0)}} \), the additional energy \(\Delta E_{\mathrm{e-ph}}^{\mathrm{(u)}}\) caused by the electron velocity, and the additional energy \(\Delta E_{\mathrm{e-ph}}^{\mathrm{(c)}} \) caused by hydrogenic impurity. The absolute values of the \(E_{\mathrm{e-ph}}^{\mathrm{(0)}}\), \(\Delta E_{\mathrm{e-ph}}^{\mathrm{(u)}}\), and \(\Delta E_{\mathrm{e-ph}}^{\mathrm{(c)}}\) increase with the increasing resonant frequency of the external magnetic field \(\omega _\mathrm{c} \), the electron–LO phonon coupling strength \(\alpha \), the electron velocity u, and the dielectric constant ratio \(\eta \); and decrease with the increasing temperature T and the quantum disks thickness L. The influences of the electron–LO phonon interaction and the Rashba spin–orbit coupling effect cannot be ignored when studying bound magnetopolarons in quantum disks. The electron–LO phonon interaction is greatly influenced by the electron velocity u, the dielectric constant ratio \(\eta \), the temperature T, and the quantum disks thickness L. But the Rashba spin–orbit interaction of polarons mainly depends on the electron velocity u and the Rashba spin–orbit coupling strength \(\alpha _\mathrm{R} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Liu, J.L. Xiao, S.F. Huo, Z.Y. Chen, Commun. Theor. Phys. 48, 930 (2007)

    Article  ADS  Google Scholar 

  2. Z.X. Li, J.L. Xiao, A.H. Liu et al., Int. J. Nanosci. 10, 501 (2011)

    Article  Google Scholar 

  3. W.P. Li, J.W. Yin, Y.F. Yu, J.L. Xiao, J. Low Temp. Phys. 160, 195 (2010)

    Article  ADS  Google Scholar 

  4. J.W. Yin, W.P. Li, Y.F. Yu, J.L. Xiao, J. Low Temp. Phys. 163, 53 (2011)

    Article  ADS  Google Scholar 

  5. S.P. Shan, S.H. Chen, J.L. Xiao, J. Low Temp. Phys. 176, 93 (2014)

    Article  ADS  Google Scholar 

  6. C.L. Fai, V. Teboul, A. Monteil, S. Maabou, I. Nsangou, Condens. Matter Phys. 8, 639 (2005)

    Article  Google Scholar 

  7. E.I. Rashba, Phys. Rev. B 62, 16267 (2000)

    Article  ADS  Google Scholar 

  8. E. Tsitsishvili, G.S. Lozano, A.O. Gogolin, Phys. Rev. B 70, 115316 (2004)

    Article  ADS  Google Scholar 

  9. C. Tapash, P. Pekka, Phys. Rev. B 71, 113305 (2005)

    Article  Google Scholar 

  10. K. Kash, A. Scherer, J.M. Worlock et al., Appl. Phys. Lett. 49, 1043 (1986)

    Article  ADS  Google Scholar 

  11. M.A. Reed, J.N. Randall, R.J. Aggarwal et al., Phys. Rev. Lett. 60, 535 (1988)

    Article  ADS  Google Scholar 

  12. C.Y. Chen, W.S. Li, X.Y. Teng, S.D. Liang, Physica B 245, 92 (1998)

    Article  ADS  Google Scholar 

  13. S. Fafard, D. Leonard, J.L. Merz et al., Appl. Phys. Lett. 66, 1767 (1995)

    Article  Google Scholar 

  14. J.X. Wang, X.W. Sun, Y. Yang et al., Nanotechnology 22, 325704 (2011)

    Article  ADS  Google Scholar 

  15. C. Lin, S. Park, H. Kim et al., Bull. Korean Chem. Soc. 33, 1993 (2012)

    Article  Google Scholar 

  16. F.M. Peeters, V.A. Schweigert, Phys. Rev. B 53, 1468 (1996)

    Article  ADS  Google Scholar 

  17. R. Price, X. Zhu, S.D. Sarma et al., Phys. Rev. B 51, 2017 (1995)

    Article  ADS  Google Scholar 

  18. G. Lommer, F. Malcher, U. Rossler, Phys. Rev. Lett. 60, 728 (1988)

    Article  ADS  Google Scholar 

  19. Q.F. Sun, J. Wang, H. Guo, Phys. Rev. B 71, 165310 (2005)

    Article  ADS  Google Scholar 

  20. O. Voskoboynikov, C.P. Lee, O. Tretyak, Phys. Rev. B 63, 165306 (2001)

    Article  ADS  Google Scholar 

  21. N. Tokuda, J. Phys. C Solid State Phys. 13, L851 (1980)

    Article  ADS  Google Scholar 

  22. T.D. Lee, F.M. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M.A. Brummell, R.J. Nicholas, M.A. Hopkins et al., Phys. Rev. Lett. 58, 77 (1987)

    Article  ADS  Google Scholar 

  24. T. Chakraborty, P. Pietiläinen, Phys. Rev. B 71, 113305 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Nature Science Foundation of Hebei Province, China (E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province, China (ZD20131008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Han, C., Xin, W. et al. Influence of Electron Velocity and Hydrogenic Impurity on the Properties of the Bound Magnetopolarons in Quantum Disks in a Magnetic Field. J Low Temp Phys 180, 330–341 (2015). https://doi.org/10.1007/s10909-015-1317-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1317-7

Keywords

Navigation