Skip to main content
Log in

Magnetic Forces Simulation of Bulk HTS over Permanent Magnetic Railway with Numerical Method

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Magnetic levitation forces of bulk high temperature superconductor (HTS) above two types permanent magnet railway (PMR) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E-J power law is used to describe the electrical field vs. current density nonlinear characteristic of HTS. The applied magnetic fields induced by the PMR are calculated by the standard analysis method with the equivalent surface current model. By the method, the calculation formulation of magnetic fields generated by Halbach PMR and symmetrical PMR is derived respectively. The simulation results show that the finite element dynamic mesh rebuilding problem of HTS magnetic levitation transportation system comprised of bulk HTS and PMR can be easily avoided by the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.R. Hull, Supercond. Sci. Technol. 13, R1 (2000)

    Article  ADS  Google Scholar 

  2. M. Murakami, Int. J. Appl. Ceram. Technol. 4, 225 (2007)

    Article  Google Scholar 

  3. J.S. Wang et al., Physica C 809, 378–381 (2002)

    Google Scholar 

  4. Z. Deng, J. Wang, J. Zheng et al., Supercond. Sci. Technol. 21, 115018 (2008)

    Article  ADS  Google Scholar 

  5. W. Liu, J.S. Wang et al., J. Supercond. Nov. Magn., 1563–1569 (2011)

  6. Z. Deng, K. Tsuzuki, M. Miki, B. Felder, S. Hara et al., J. Supercond. Nov. Magn. 25, 331–338 (2012)

    Article  Google Scholar 

  7. J. Wang, S. Wang, C. Deng, Y. Zeng et al., IEEE Trans. Appl. Supercond. 18(2) (2008)

  8. M. Liu, Y. Lu et al., J. Low Temp. Phys. 163, 78–85 (2011)

    Article  ADS  Google Scholar 

  9. M. Liu, Y. Lu et al., J. Supercond. Nov. Magn. 24, 1809–1813 (2011)

    Article  Google Scholar 

  10. X.-Y. Zhang, J. Zhou, Y.-H. Zhou, J. Supercond. Nov. Magn. 23, 265–268 (2010)

    Article  Google Scholar 

  11. X.-Y. Zhang, J. Zhou, Y.-H. Zhou, J. Appl. Phys. 107, 036102 (2010)

    Article  ADS  Google Scholar 

  12. X.F. Gou, X.J. Zheng, Y.H. Zhou, IEEE Trans. Appl. Supercond. 17, 3 (2007)

    Google Scholar 

  13. G.T. Ma, J.S. Wang, S.Y. Wang, IEEE Trans. Appl. Supercond. 20(4) (2010)

  14. T.A. Coombs, A.M. Campbell et al., Int. J. Comput. Math. Electr. Electron. Eng. 20 (2001)

  15. Z. Hong, A.M. Campbell, T.A. Coombs, Supercond. Sci. Technol. 19 (2006)

  16. M. Zhang, T.A. Coombs, Supercond. Sci. Technol. 25, 015009 (2012)

    Article  ADS  Google Scholar 

  17. Y. Lu et al., Int. J. Mod. Phys. B 25, 2525–2532 (2011)

    Article  ADS  Google Scholar 

  18. Y. Lu, J. Wang et al., J. Supercond. Nov. Magn. 21, 467–472 (2008)

    Article  Google Scholar 

  19. E.H. Brandt, M. Indenbom, Phys. Rev. B 48(17) (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyun Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Zhuang, S. Magnetic Forces Simulation of Bulk HTS over Permanent Magnetic Railway with Numerical Method. J Low Temp Phys 169, 111–121 (2012). https://doi.org/10.1007/s10909-012-0637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0637-0

Keywords

Navigation