Skip to main content
Log in

Low T Study of PdH x System by Torsional Oscillator Technique: x Dependent Responses

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Hydrogen atoms dissolve in Pd at densities up to one H atom per Pd, which provides higher atomic H density than in solid H2. They are known to have large diffusion coefficient due to quantum tunneling. Torsional oscillator (TO) technique is employed to investigate the phases of H in Pd, which is known to show phase boundaries at the lowest T among metal-hydrogen (MH) systems. Specific heat measurements have been performed for PdH x with x up to high H concentration specimens as well as studies of the resistivity study to establish the unique xT phase diagram. We have, in addition, been performing TO experiments, in order to study the effect of atomic H intrusion and the dynamics in the PdH(D) x system. The TO is a well-established, powerful instrument method to investigate superfluidity and quantum vortices of liquid He, especially in thin films, as well as dislocation dynamics in solids. In our TO experiments on PdH x specimens have shown a resonance frequency shift for PdH x , with 0.16≤x≤0.75 at the lowest T’s, which can be largely explained by the lattice deformation by H intrusion. This x dependent contribution has a smaller, additional change depending on x and T above ∼50 K. We will show the details of experimental data and discuss the correspondence to the phonon modes change and further possibility of studying occurrence of quantum phenomena for the hydrogen system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Fukai, The Metal-Hydrogen System (Springer, Berlin, 2005)

    Google Scholar 

  2. A.I. Kolesnikov, I. Natkaniec, V.E. Antonov, I.T. Belash, V.K. Fedotov, J. Krawczyk, J. Mayer, E.G. Ponyatovsky, Physica B 174, 257–261 (1991)

    Article  ADS  Google Scholar 

  3. Y. Fukai, H. Sugimoto, Adv. Phys. 34, 263–326 (1985)

    Article  ADS  Google Scholar 

  4. D.A. Papaconstantopoulos, B.M. Klein, E.N. Economou, L.L. Boyer, Phys. Rev. B 17, 141–150 (1978)

    Article  ADS  Google Scholar 

  5. G.J. Zimmermann, J. Less-Common Met. 49, 49–66 (1976)

    Article  Google Scholar 

  6. J.K. Jacobs, C.R. Brown, V.S. Pavlov, F.D. Manchester, J. Phys. 6, 2216–2232 (1976)

    Article  ADS  Google Scholar 

  7. B. Kappesser, U. Stuhr, H. Wipf, J. Weissmuller, C. Klos, H. Gleiter, J. Alloys Compd. 231, 337–342 (1995)

    Article  Google Scholar 

  8. K. Yamakawa, J. Alloys Compd. 393, 70–76 (2005)

    Article  Google Scholar 

  9. H. Akaki, Y. Sakamaki, S. Harada, M. Kubota, J. Alloys Compd. 446–447, 436–438 (2007)

    Article  Google Scholar 

  10. H. Araki, S. Harada, M. Kubota, J. Phys. Chem. Solids 66, 1490–1492 (2005)

    Article  ADS  Google Scholar 

  11. H. Araki, S. Harada, M. Nakamura, S. Harada, T. Obata, N. Mikhin, V. Syvokon, M. Kubota, J. Low Temp. Phys. 134, 1145–1151 (2004)

    Article  ADS  Google Scholar 

  12. D.M. Nace, G.J. Aston, J. Am. Chem. Soc. 79, 3627 (1957)

    Article  Google Scholar 

  13. O. Blaschko, J. Less-Common Met. 100, 307–320 (1984)

    Article  Google Scholar 

  14. M. Kubota, et al. J. Low Temp. Phys. 158, 572–577 (2010). arXiv:0903.1326

    Article  ADS  Google Scholar 

  15. J.G. Bednorz, K.A. Muller, Z. Phys. B 64, 189–193 (1986)

    Article  ADS  Google Scholar 

  16. A. Leggett, Quantum Liquids (Oxford Univ. Press, London, 2006)

    Book  Google Scholar 

  17. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181–1203 (1973)

    Article  ADS  Google Scholar 

  18. D.J. Bishop, J.D. Reppy, J. Phys. C 6, 339–341 (1978)

    Google Scholar 

  19. D.S. Fisher, M.P.A. Fisher Huse, Phys. Rev. B 43, 130–159 (1991)

    Article  ADS  Google Scholar 

  20. Y. Kamihara et al., J. Am. Chem. Soc. 128, 10012–10013 (2006)

    Article  Google Scholar 

  21. T.E. Ellis, C.B. Satterthewaite, M.H. Mueller, T.O. Brun, Phys. Rev. Lett. 42, 456–458 (1979)

    Article  ADS  Google Scholar 

  22. J.E. Schirber, B. Morosin, Phys. Rev. B 12, 17–118 (1975)

    Article  ADS  Google Scholar 

  23. S. Harada, T. Kasahara, S. Tamaki, J. Phys. Soc. Jpn. 54, 168–174 (1985)

    Article  ADS  Google Scholar 

  24. H. Hemmes, B.M. Geerken, R. Griessen, J. Phys. F 14, 2923–2933 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Harada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, S., Donuma, T., Araki, H. et al. Low T Study of PdH x System by Torsional Oscillator Technique: x Dependent Responses. J Low Temp Phys 162, 724–732 (2011). https://doi.org/10.1007/s10909-010-0327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0327-8

Keywords

Navigation