Skip to main content
Log in

Hydrodynamic Instability During Non-uniform Growth of a Helium Crystal

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Rayleigh-Taylor instability (Taylor in Proc. R. Soc. Lond. Ser. A 201:192, 1950) is an instability of the interface which can be realized when the lighter fluid is propelling the heavier one. We analyze an analog of the hydrodynamic Rayleigh-Taylor instability for the superfluid-solid 4He interface under non-uniform growth rate of the solid phase. The development of the interface instability starts with an accelerated interface growth rate and provided that the magnitude of interface acceleration exceeds some critical value independent of the surface stiffness. The plane and spherical shapes of the liquid-solid interface are considered. For the Richtmyer-Meshkov (Meshkov in Izv. Akad. Nauk SSSR 5:151, 1969) limiting case of an impulsively accelerated interface, the onset of instability does not depend on the sign of the interface acceleration. The investigation of the surface instability can explain the features observed in the experiment (Chavanne et al. in Phys. Rev. Lett. 86:5506–5509, 2001) where the crystal 4He nucleation is triggered by focusing an ultrasonic wave of the large amplitude. The onset and development of the instability are expected at the surface of helium crystals in the course of their abnormal fast growth under large magnitudes of overpressures (Tsymbalenko in J. Low Temp. Phys. 138:795, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.I. Taylor, Proc. R. Soc. Lond. Ser. A 201, 192 (1950)

    Article  MATH  ADS  Google Scholar 

  2. E.E. Meshkov, Izv. Akad. Nauk SSSR (Mekh). (Zhidk. i Gaza) 5, 151 (1969) [NASA Technical Translation F-13, 074 (1970)]

    Google Scholar 

  3. X. Chavanne, S. Balibar, F. Caupin, Phys. Rev. Lett. 86, 5506–5509 (2001)

    Article  ADS  Google Scholar 

  4. V.L. Tsymbalenko, J. Low Temp. Phys. 138, 795 (2005)

    Article  ADS  Google Scholar 

  5. M.Yu. Kagan, Zh. Eksp. Teor. Fiz. 90, 498 (1986)

    Google Scholar 

  6. M.Yu. Kagan, Sov. Phys. JETP 63, 288 (1986)

    Google Scholar 

  7. P. Nozieres, M. Uwaha, J. Phys. 47, 263 (1986)

    Article  Google Scholar 

  8. L.A. Maksimov, V.L. Tsymbalenko, Zh. Eksp. Teor. Fiz. 122, 530 (2002)

    Google Scholar 

  9. L.A. Maksimov, V.L. Tsymbalenko, JETP 95, 455 (2002)

    Article  ADS  Google Scholar 

  10. V.L. Tsymbalenko, Fiz. Nizk. Temp. 21, 162 (1995)

    Google Scholar 

  11. V.L. Tsymbalenko, Low Temp. Phys. 21, 120 (1995)

    ADS  Google Scholar 

  12. V.L. Tsymbalenko, J. Low Temp. Phys. 121, 53 (2000)

    Article  Google Scholar 

  13. V.L. Tsymbalenko, Zh. Eksp. Teor. Fiz. 126, 1391 (2004)

    Google Scholar 

  14. V.L. Tsymbalenko, JETP 95, 455 (2002)

    Article  ADS  Google Scholar 

  15. G. Birkhoff, Hydrodynamics (Princeton University Press, Princeton, 1960)

    MATH  Google Scholar 

  16. C.D. Demaria, J.W. Lewellen, A.J. Dahm, J. Low Temp. Phys. 89, 385 (1992)

    Article  ADS  Google Scholar 

  17. S. Balibar, B. Casting, C. Laroche, J. Phys. (Paris) Lett. 41, 283 (1980)

    Google Scholar 

  18. Y. Sasaki, X. Mizusaki, J. Low Temp. Phys. 110, 491 (1998)

    Article  Google Scholar 

  19. J.P. Ruutu, P.J. Hakonen, J.S. Penttila, A.V. Babkin, J.P. Saramaki, E.B. Sonin, Phys. Rev. Lett. 77, 2514 (1996)

    Article  ADS  Google Scholar 

  20. T.A. Johnson, C. Elbaum, Phys. Rev. E 62, 975 (2000)

    Article  ADS  Google Scholar 

  21. S. Balibar, T. Mizusaki, Y. Sasaki, J. Low Temp. Phys. 120, 293 (2000)

    Article  Google Scholar 

  22. L.D. Landau, E.M. Lifshits, Fluid Mechanics (Pergamon Press, Elmsford, 1987)

    MATH  Google Scholar 

  23. S.N. Burmistrov, L.B. Dubovskii, V.L. Tsymbalenko, Phys. Rev. E 79, 051606 (2009)

    Article  ADS  Google Scholar 

  24. A.F. Andreev, V.G. Knizhnik, Zh. Eksp. Teor. Fiz. 83, 416 (1982)

    Google Scholar 

  25. A.F. Andreev, V.G. Knizhnik, Sov. Phys. JETP 56, 226 (1982)

    Google Scholar 

  26. S. Balibar, H. Alles, A.Ya. Parshin, Rev. Mod. Phys. 77, 317 (2005)

    Article  ADS  Google Scholar 

  27. R. Nomura, S. Kimura, F. Ogasawara, H. Abe, Y. Okuda, Phys. Rev. B 70, 054516 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Dubovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubovskii, L.B., Burmistrov, S.N. & Tsymbalenko, V.L. Hydrodynamic Instability During Non-uniform Growth of a Helium Crystal. J Low Temp Phys 162, 391–398 (2011). https://doi.org/10.1007/s10909-010-0274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0274-4

Keywords

Navigation