Skip to main content
Log in

Torsional Oscillator Experiments under DC Rotation with Reduced Vibration

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe a highly stable, rotating cryostat designed for torsional oscillator experiments under DC rotation, where vortex lines penetration has been studied for 3D superfluids made of monolayer He films as well as for the supersolid state in hcp solid 4He. Especially, torsional oscillator experiments on hcp solid 4He are known to be quite sensitive to small vibrations or linear velocities on the order of 10 μm/s or less. Thus, vibrations of the apparatus may destroy the measurements if they are not smaller than or equal to those of the building or the ground itself. The torsional oscillator performance described here often gives better data under steady rotation at moderate speeds than under stationary conditions. The article describes briefly a design idea shared by the two rotating cryostats at ISSP, the University of Tokyo, and discusses the torsional oscillator (TO) experiments under DC rotation. This is truly a high speed rotating cryostat with maximum rotational speed of at least 6 revolutions per second for TO experiments. It gives also much higher stability at reasonably low rotational speed because of the well-planned structure of the double frame construction with a lot of mass for the upper drive frame for rotation and the almost mechanically isolated, except for the drive mode motion, rotating cryostat with much higher stability of the inner frame for the cryostat mount. Phenomena of quantized vortex lines penetration through a macroscopic superfluid give unique information about the superfluidity itself. A method for detection of vortex lines penetration events using TO technology is also briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Berthold, D.J. Bishop, J.D. Reppy, Phys. Rev. Lett. 39, 348 (1977)

    Article  ADS  Google Scholar 

  2. E.L. Andronikashivili, Zh. Eksp. Teor. Fiz. 16, 780 (1946)

    Google Scholar 

  3. R.C. Richardson, E.N. Smith, Experimental Techniques in Condensed Matter Physics at Low Temperatures. Frontiers in Physics Lecture Note Series (Addison Wesley, Reading, 1988)

    Google Scholar 

  4. M. Fukuda, K. Ooyama, T. Obata, V. Kovacik, M. Kubota, J. Low Temp. Phys. 113, 423 (1998)

    Article  Google Scholar 

  5. D.V. Osborn, Proc. Phys. Soc. A 63, 909 (1950)

    Article  ADS  Google Scholar 

  6. W.F. Vinen, Nature 181, 1524 (1958)

    Article  ADS  Google Scholar 

  7. W.F. Vinen, Proc. R. Soc. Lond. A 260, 218 (1961)

    Article  ADS  Google Scholar 

  8. P.L. Gammel, T.L. Ho, J.D. Reppy, Phys. Rev. Lett. 55, 2708 (1985)

    Article  ADS  Google Scholar 

  9. H.E. Hall, J.R. Hook, S. Wang, A.J. Armstrong, D. Bevan, Physica B 194–196, 41 (1994)

    Article  Google Scholar 

  10. P. Adams, W.L. Glaberson, Phys. Rev. B 35, 4633 (1987)

    Article  ADS  Google Scholar 

  11. K. Shirahama, M. Kubota, S. Ogawa, N. Wada, T. Watanabe, Phys. Rev. Lett. 64, 1541–1544 (1990)

    Article  ADS  Google Scholar 

  12. M. Kubota, Surf. Sci. 283, 404–413 (1993)

    Article  ADS  Google Scholar 

  13. R. Blaauwgeers, S. Boldarev, V.B. Eltsov, A.P. Finne, M. Krusius, J. Low Temp. Phys. 132, 263–279 (2003)

    Article  Google Scholar 

  14. T. Sato et al., Phys. Rev. Lett. 101, 055301 (2008)

    Article  ADS  Google Scholar 

  15. M. Yamashita et al., Phys. Rev. Lett. 101, 025302 (2008)

    Article  ADS  Google Scholar 

  16. M. Yamashita et al., Phys. Rev. Lett. 94, 075301 (2005)

    Article  ADS  Google Scholar 

  17. R. Ishiguro et al., Phys. Rev. Lett. 93, 125301 (2004)

    Article  ADS  Google Scholar 

  18. M. Kubota et al., Physica B 329–333, 1577–1581 (2003)

    Article  Google Scholar 

  19. M. Kubota, T. Igarashi, M. Fukuda, V. Kovacik, Y. Hiresaki, in Proceedings of ICEC17 Refrigeration Section 5 (1998), pp. 161–164

    Google Scholar 

  20. M. Fukuda, V. Kovacik, T. Igarashi, M. Kubota, in Proceedings of ICEC17 Refrigeration Section 6 (1998), pp. 217–220

    Google Scholar 

  21. T. Obata, I. Tanuma, T. Igarashi, M. Kubota, J. Low Temp. Phys. 138, 929–934 (2005)

    Article  ADS  Google Scholar 

  22. M. Kubota, G. Ueno, T. Igarashi, Y. Karaki, Physica B 194–196, 797 (1994)

    Article  Google Scholar 

  23. V. Kovacik, M. Fukuda, T. Igarashi, K. Torizuka, M. Zalalutdinov, M. Kubota, J. Low Temp. Phys. 101, 567–572 (1995)

    Article  ADS  Google Scholar 

  24. M. Fukuda, PhD thesis, Dep. phys., the University of Tokyo, 2000

  25. T. Minoguchi, Y. Nagaoka, Jpn. J. Appl. Phys. 26(suppl. 26-3), 327 (1987)

    Google Scholar 

  26. T. Minoguchi, Y. Nagaoka, Progr. Theor. Phys. 80, 397 (1988)

    Article  ADS  Google Scholar 

  27. J. Machta, Guyer, Phys. Rev. Lett. 60, 2054 (1988)

    Article  ADS  Google Scholar 

  28. J. Machta, Guyer, J. Low Temp. Phys. 74, 231 (1989)

    Article  ADS  Google Scholar 

  29. T. Obata, M. Kubota, Phys. Rev. B 66, 140506(R) (2002)

    Article  ADS  Google Scholar 

  30. M. Fukuda, M.K. Zalalutdinov, V. Kovacik, T. Minoguchi, T. Obata, M. Kubota, E.B. Sonin, Phys. Rev. B 71, 212502 (2005)

    Article  ADS  Google Scholar 

  31. S.K. Nemirovskii, E.B. Sonin, Phys. Rev. B 76, 224507 (2007)

    Article  ADS  Google Scholar 

  32. M. Kubota, M. Fukuda, T. Obata, Y. Ito, A. Penzev, T. Minoguchi, E. Sonin, AIP Conf. Proc CP850, 283 (2006)

    Article  ADS  Google Scholar 

  33. A. Penzev, Y. Yasuta, M. Kubota, Phys. Rev. Lett. 101, 065301 (2008)

    Article  ADS  Google Scholar 

  34. N. Shimizu, Y. Yasuta, M. Kubota, arXiv:0903.1326v3 [cond-mat.other]

  35. M. Yagi, A. Kitamura, N. Shimizu, Y. Yasuta, M. Kubota, J. Low Temp. Phys. (2010). doi:10.1007/sl0909-010-0475-x

  36. M. Kubota, N. Shimizu, Y. Yasuta, P. Gumann, S. Nemirovskii, J. Low Temp. Phys. 158, 572 (2010)

    Article  ADS  Google Scholar 

  37. S. Harada, T. Donuma, H. Araki, T. Kakuta, R. Nakatsuji, M. Kubota, J. Low Temp. Phys. (2010). doi:10.1007/sl0909-010-0564-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Yagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, M., Kitamura, A., Shimizu, N. et al. Torsional Oscillator Experiments under DC Rotation with Reduced Vibration. J Low Temp Phys 162, 754–761 (2011). https://doi.org/10.1007/s10909-010-0267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0267-3

Keywords

Navigation