Skip to main content
Log in

Inherent Thermometry in a Hybrid Superconducting Tunnel Junction

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We discuss inherent thermometry in a Superconductor-Normal metal-Superconductor tunnel junction. In this configuration, the energy selectivity of single-particle tunneling can provide a significant electron cooling, depending on the bias voltage. The usual approach for measuring the electron temperature consists in using an additional pair of superconducting tunnel junctions as probes. In this paper, we discuss our experiment performed on a different design with no such thermometer. The quasi-equilibrium in the central metallic island is discussed in terms of a kinetic equation including injection and relaxation terms. We determine the electron temperature by comparing the micro-cooler experimental current-voltage characteristic with isothermal theoretical predictions. The limits of validity of this approach, due to the junctions asymmetry, the Andreev reflection or the presence of sub-gap states are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nahum, T.M. Eiles, J.M. Martinis, Appl. Phys. Lett. 65, 3124 (1994)

    Article  ADS  Google Scholar 

  2. J.P. Pekola, D.V. Anghel, T.I. Suppula, J.K. Suoknuuti, A.J. Manninen, M. Manninen, Appl. Phys. Lett. 76, 2782 (2000)

    Article  ADS  Google Scholar 

  3. J.M. Rowell, D.C. Tsui, Phys. Rev. B 14, 2456 (1976)

    Article  ADS  Google Scholar 

  4. M. Nahum, J.M. Martinis, Appl. Phys. Lett. 63, 3075 (1993)

    Article  ADS  Google Scholar 

  5. L. Solymar, Superconductive Tunneling and Applications (Wiley Intersciences, New York, 1972)

    Google Scholar 

  6. D.R. Schmidt, C.S. Yung, A.N. Cleland, Appl. Phys. Lett. 83, 1002 (2003)

    Article  ADS  Google Scholar 

  7. Z. Jiang, H. Lim, V. Chandrasekhar, J. Eom, Appl. Phys. Lett. 83, 2190 (2003)

    Article  ADS  Google Scholar 

  8. S. Rajauria, P.S. Luo, T. Fournier, F.W.J. Hekking, H. Courtois, B. Pannetier, Phys. Rev. Lett. 99, 047004 (2007)

    Article  ADS  Google Scholar 

  9. S. Rajauria, P. Gandit, T. Fournier, F.W.J. Hekking, B. Pannetier, H. Courtois, Phys. Rev. Lett. 100, 207002 (2008)

    Article  ADS  Google Scholar 

  10. M.L. Roukes, M.R. Freeman, R.S. Germain, R.C. Richardson, M.B. Ketchen, Phys. Rev. Lett. 55, 422 (1985)

    Article  ADS  Google Scholar 

  11. F.C. Wellstood, C. Urbina, J. Clarke, Phys. Rev. B 49, 5942 (1994)

    Article  ADS  Google Scholar 

  12. D.R. Heslinga, T.M. Klapwijk, Phys. Rev. B 47, 5157 (1993)

    Article  ADS  Google Scholar 

  13. J.P. Pekola, T.T. Heikkilä, A.M. Savin, J.T. Flyktman, F. Giazotto, F.W.J. Hekking, Phys. Rev. Lett. 92, 056804 (2004)

    Article  ADS  Google Scholar 

  14. B. Pannetier, J. Chaussy, R. Rammal, Phys. Scr. T 13, 245 (1986)

    Article  ADS  Google Scholar 

  15. F. Pierre, A.B. Gougam, A. Anthore, H. Pothier, D. Estéve, O. Norman Birge, Phys. Rev. B 68, 085413 (2003)

    Article  ADS  Google Scholar 

  16. J.P. Pekola, A.J. Manninen, M.M. Leivo, K. Arutyunov, J.K. Suoknuuti, T.I. Suppula, B. Collaudin, Physica B 280, 485 (2000)

    Article  ADS  Google Scholar 

  17. R.C. Dynes, J.P. Garno, G.B. Hertel, T.P. Orlando, Phys. Rev. Lett. 53, 2437 (1984)

    Article  ADS  Google Scholar 

  18. A.F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964)

    Google Scholar 

  19. D. Saint-James, J. Phys. France 25, 899–905 (1964)

    Article  Google Scholar 

  20. H. Courtois, P. Gandit, B. Pannetier, D. Mailly, Superlatt. Microstruct. 25, 721 (1999)

    Article  ADS  Google Scholar 

  21. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982)

    Article  ADS  Google Scholar 

  22. A.F. Volkov, A.V. Zaitsev, T.M. Klapwijk, Physica C 210, 21 (1993)

    Article  ADS  Google Scholar 

  23. B.J. van Wees, P. de Vries, P. Magnée, T.M. Klapwijk, Phys. Rev. Lett. 69, 510 (1992)

    Article  ADS  Google Scholar 

  24. F.W.J. Hekking, Yu.V. Nazarov, Phys. Rev. B 49, 6847 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Courtois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courtois, H., Rajauria, S., Gandit, P. et al. Inherent Thermometry in a Hybrid Superconducting Tunnel Junction. J Low Temp Phys 153, 325–338 (2008). https://doi.org/10.1007/s10909-008-9836-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-008-9836-0

Keywords

PACS

Navigation