Skip to main content
Log in

Oviposition Behavior of Interacting Predatory Mites: Response to the Presence of Con- and Heterospecific Eggs

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Oviposition behavior may be affected by the presence of potential future competitors, mates, or predators of offspring. We examined patch choice, oviposition site preference and egg production in the predaceous mites Phytoseiulus persimilis and Neoseiulus californicus (Acari: Phytoseiidae) when given a choice between paired spider mite patches with and without conspecific eggs, with and without heterospecific eggs, and with conspecific or heterospecific eggs. Neoseiulus californicus females had no patch preference and distributed their eggs randomly in all choice situations. This was also the case with P. persimilis females given a choice between patches with and without conspecific eggs and between patches with either con- or heterospecific eggs. Phytoseiulus persimilis females confronted with patches with and without heterospecific eggs preferentially stayed and oviposited in the predator free patches. We discuss the oviposition strategies of P. persimilis and N. californicus with respect to food competition, cannibalism and intraguild predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Agresti, A. (2002). Analysing repeated categorical response data. In Agresti, A. (ed.), Categorial data analysis. John Wiley & Sons, Inc., pp. 455–491.

  • Blaustein, L. (1999). Oviposition site selection in response to risk of predation: evidence from aquatic habitats and consequences for population dynamics and community structure. In Wasser, S. P. (ed.), Evolutionary theory and processes: modern perspectives, Kluwer, Dordrecht, pp. 441–456.

    Google Scholar 

  • Bühl, A., and Zöfel, P. (2002). SPSS 11. Einführung in die moderne Datenanalyse unter Windows. Person Studium, München.

    Google Scholar 

  • Charnov, E. L., and Skinner, S. W. (1985). Complementary approaches to the understanding of parasitoid oviposition decisions. Environ. Entomol. 14: 300–305.

    Google Scholar 

  • Croft, B. A., Luh, H.-K., and Schausberger, P. (1999). Larval size relative to larval feeding, cannibalism of larvae, egg or adult female size and larval-adult setal patterns among 13 phytoseiid mite species. Exp. Appl. Acarol. 23: 599–610.

    Article  Google Scholar 

  • Dosse, G. (1958). Über einige neue Raubmilbenarten (Acar. Phytoseiidae). Pflanzensch. Ber. 21: 44–61.

    Google Scholar 

  • Elgar, M. A., and Crespi, B. J. (1992). Cannibalism: ecology and evolution among diverse taxa, Oxford University Press, Oxford.

    Google Scholar 

  • Enigl, M., and Schausberger, P. (2004). Mate choice in the predaceous mite Phytoseiulus persimilis: evidence of self-referent phenotype matching? Ent. Exp. Appl. 112: 21–28.

    Article  Google Scholar 

  • Fox, L. R. (1975). Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6: 87–106.

    Article  Google Scholar 

  • Friese, D. D., and Gilstrap, F. E. (1982). Influence of prey availability on reproduction and prey consumption of Phytoseiulus persimilis, Amblyseius californicus and Metaseiulus occidentalis (Acarina: Phytoseiidae). Int. J. Acarol. 8: 85–89.

    Article  Google Scholar 

  • Gilstrap, F. E., and Friese, D. D. (1985). The predatory potential of Phytoseiulus persimilis, Amblyseius californicus, and Metaseiulus occidentalis (Acarina. Phytoseiidae). Int. J. Acarol. 11: 163–168.

    Google Scholar 

  • Grostal, P., and Dicke, M. (1999). Direct and indirect cues of predation risk influence behavior and reproduction of prey: a case for acarine interactions. Behav. Ecol. 10: 422–427.

    Article  Google Scholar 

  • Grostal, P., and Dicke, M. (2000). Recognising one's enemies: a functional approach to risk assessment by prey. Behav. Ecol. Sociobiol. 47: 258–264.

    Article  Google Scholar 

  • Janssen, A., Bruin, J., Jacobs, G., Schraag, R., and Sabelis, M. W. (1997). Predators use volatiles to avoid prey patches with conspecifics. Anim. Behav. 66: 223–232.

    Google Scholar 

  • Janssen, A., Pallini, A., Venzon, M., and Sabelis, M. W. (1999). Absence of odour-mediated avoidance of heterospecific competitors by the predatory mite Phytoseiulus persimilis. Entomol. Exp. Appl. 92: 73–82.

    Article  Google Scholar 

  • McMurtry, J. A., and Croft, B. A. (1997). Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 42: 291–321.

    Article  PubMed  CAS  Google Scholar 

  • Nagelkerke, C. J. (1994). Simultaneous optimization of egg distribution and sex allocation in a patch-structured population. Am. Nat. 144: 262–284.

    Article  Google Scholar 

  • Nagelkerke, C. J., Van Baalen, M., and Sabelis, M. W. (1996). When should a female avoid adding eggs to the clutch of another female? A simultaneous oviposition and sex allocation game. Evol. Ecol. 10: 475–497.

    Article  Google Scholar 

  • Nagelkerke, C. J., and Sabelis, M. W. (1998). Precise control of sex allocation in pseudo-arrhenotokous phytoseiid mites. J. Evol. Biol. 11: 649–684.

    Article  Google Scholar 

  • Palevsky, E., Reuveny, H., Okonis, O., and Gerson, U. (1999). Comparative behavioural studies of larval and adult stages of the phytoseiids (Acari: Mesostigmata) Typhlodromus athiasae and Neoseiulus californicus. Exp. Appl. Acarol. 23: 467–485.

    Article  Google Scholar 

  • Polis, G. A. (1981). The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12: 225–251.

    Article  Google Scholar 

  • Polis, G. A., Myers, C. A., and Holt, R. D. (1989). The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20: 297–330.

    Article  Google Scholar 

  • Sabelis, M. W., and Dicke, M. (1985). Long-range dispersal and searching behaviour. In Helle, W., and Sabelis, M. W. (eds.), Spider mites: Their biology, natural enemies and Control, Volume 1B, Elsevier, Amsterdam, pp. 141–160.

    Google Scholar 

  • Sabelis, M. W., and Janssen, A. (1994). Evolution of life-history patterns in the Phytoseiidae. In Houck, M. A. (ed.), Mites: Ecological and evolutionary analyses of life-history patterns, Chapman & Hall, New York, pp. 70–98.

    Google Scholar 

  • Sabelis, M. W., Nagelkerke, C. J., and Breeuwer, J. A. J. (2002). Sex ratio control in arrhenotokous and pseudo-arrhenotokous mites. In Hardy, I. C. W. (ed.), Sex Ratios—Concepts and Research Methods, Cambridge University Press, Cambridge, pp. 235–253.

    Google Scholar 

  • Schausberger, P., and Croft, B. A. (1999). Predation and discrimination between con- and heterospecific eggs among specialist and generalist phytoseiid mite species (Acari: Phytoseiidae). Environ. Entomol. 28: 523–528.

    Google Scholar 

  • Schausberger, P., and Croft, B. A. (2000). Cannibalism and intraguild predation among phytoseiid mites: are aggressiveness and prey preference related to diet specialization? Exp. Appl. Acarol. 24: 709–725.

    Article  PubMed  CAS  Google Scholar 

  • Schausberger, P., and Croft, B. A. (2001). Kin recognition and larval cannibalism by adult females in specialist predaceous mites. Anim. Behav. 61: 459–464.

    Article  Google Scholar 

  • Schausberger, P. (2004). Ontogenetic isolation favours sibling cannibalism in predatory mites. Anim. Behav. 67: 1031–1035.

    Article  Google Scholar 

  • Schausberger, P. (2005). The predatory mite Phytoseiulus persimilis manipulates imprinting among offspring through egg placement. Behav. Ecol. Sociobiol. 58: 53–59.

    Article  Google Scholar 

  • Schausberger, P., and Walzer, A. (2001). Combined versus single species release of predaceous mites: predator-predator interactions and pest suppression. Biol. Control 20: 269–278.

    Article  Google Scholar 

  • Thompson, J. N. (1988). Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol. Exp. Appl. 47: 3–14.

    Article  Google Scholar 

  • Vanas, V., Enigl, M., Walzer, A., and Schausberger, P. (2006). The predatory mite Phytoseiulus persimilis adjusts patch leaving to own and progeny prey needs. Exp. Appl. Acarol. 39: 1–11.

    Google Scholar 

  • Walzer, A., Blümel, S., and Schausberger, P. (2001). Population dynamics of interacting predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, held on detached bean leaves. Exp. Appl. Acarol. 25: 731–743.

    Article  PubMed  CAS  Google Scholar 

  • Walzer, A., and Schausberger, P. (1999a). Cannibalism and interspecific predation in the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus: predation rates and effects on reproduction and juvenile development. Bio Control. 43: 457–468.

    Google Scholar 

  • Walzer, A., and Schausberger, P. (1999b). Predation preferences and discrimination between con- and heterospecific prey by the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus. Bio Control. 43: 467–478.

    Google Scholar 

Download references

Acknowledgments

Andreas Walzer was funded by the Austrian Ministry of Agriculture and Forestry, Environment and Water Management. Peter Schausberger was funded by the Austrian Academy of Sciences (APART; Austrian Programme for Advanced Research and Technology). We thank Monika Enigl, University of Natural Resources and Applied Life Sciences, Vienna for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Walzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walzer, A., Paulus, H.F. & Schausberger, P. Oviposition Behavior of Interacting Predatory Mites: Response to the Presence of Con- and Heterospecific Eggs. J Insect Behav 19, 305–320 (2006). https://doi.org/10.1007/s10905-006-9025-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-006-9025-4

KEY WORDS:

Navigation