Skip to main content
Log in

Nano-Spheroidal MnOx/C Nanomaterial with Battery-Like and Capacitive Charge Storage for Lithium-Ion Capacitors

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Lithium-ion capacitors (LICs) possess the potential to satisfy the demands of both high power and energy density for energy storage devices. In this report, a novel LIC has been designed featuring with the MnOx/C batterytype anode and activated carbon (AC) capacitortype cathode. The Nano-spheroidal MnOx/C is synthesized using facile one-step combustion method. Benefiting from the uniform distribution of the MnOx/C nano-spheroidal particle, a fast kinetics for both charge-transfer and ion-diffusion process is realized, promoting battery-like and capacitive energy storage. As anticipated, the MnOx/C composite material exhibits an exceptional capacity of 1167.2 and 828.5 mAh g− 1 from the first and the 100th cycle at 0.1 A g− 1, high rate capability of 171.1 mAh g− 1 even at a high rate of 2 A g− 1, much higher than pure MnOx. The MnOx/C//AC LIC displays an excellent electrochemical performance with excellent energy density of 66.9 Wh kg− 1 (250 W kg− 1) and remarkable power density of 2500 W kg− 1 (11.7 Wh kg− 1). These encouraging results make the electrode material and electrode system promising for nextgeneration highperformance energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. S. Yuan, Q. Lai, X. Duan, Q. Wang, Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: a review. J. Energy Storage. 61, 106716 (2023)

    Article  Google Scholar 

  2. Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy Chem. 59, 83–99 (2021)

    Article  CAS  Google Scholar 

  3. G. Xu, G.Y. Wang, X.F. Zhang, Z.P. Deng, L.H. Huo, S. Gao, Biotemplate synthesis of mesoporous α-Fe2O3 hierarchical structure with assisted pseudocapacitive as an anode for long-life lithium ion batteries. Ceram. Int. 47, 3772–3779 (2021)

    Article  CAS  Google Scholar 

  4. K.M.A. Raihan, S. Sahoo, T. Nagaraia, S. Sigder, B. LaCroix, C.M. Sorensen, S.R. Das, Transforming scalable synthesis of graphene aerosol gel material toward highly flexible and wide-temperature tolerant printed micro-supercapacitors. APL Energy. 2, 016104 (2024)

    Article  Google Scholar 

  5. P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, S.J. Kim, High-energy aqueous Li-ion hybrid capacitor based on metal-organicframework-mimicking insertion-type copper hexacyanoferrate and capacitive-type graphitic carbon electrodes. J. Alloy Compound. 765, 1041–1048 (2018)

    Article  CAS  Google Scholar 

  6. T. Li, G. Yu, M. Song, Q. Zhang, Y. Li, X. Bai, Facile synthesis of Nb-Doped CoTiO3 hexagonal microprisms as Promising Anode materials for Lithium-ion batteries. Inorganics. 11, 10 (2023)

    Article  CAS  Google Scholar 

  7. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science. 347, 1246501 (2015)

    Article  PubMed  Google Scholar 

  8. M.S. Dresselhaus, I.L. Thomas, Alternative energy technologies. Nature. 414, 332–337 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. L. Wang, X. Zhang, C. Li, X.Z. Sun, K. Wang, F.Y. Su, F.Y. Liu, Y.W. Ma, Recent advances in transition metal chalcogenides for lithium-ion capacitors. Rare Met. 41, 2971–2984 (2022)

    Article  CAS  Google Scholar 

  11. S. Yuan, X. Duan, J. Liu, Y. Ye, F. Lv, T. Liu, Q. Wang, X. Zhang, Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Mater. 42, 317–369 (2021)

    Article  Google Scholar 

  12. C. Sun, X. Zhang, C. Li, K. Wang, X. Sun, Y. Ma, High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 24, 160–166 (2020)

    Article  Google Scholar 

  13. Y.B. An, T. Liu, C. Li, X. Zhang, T. Hu, X.Z. Sun, K. Wang, C. Wang, Y.W. Ma, A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors. J. Mater. Chem. A 9, 15654 (2021)

    Article  CAS  Google Scholar 

  14. H. Cheng, C. Ma, W. Li, Facile synthesis of porous LiMn2O4 nano-cubes for ultra-stable lithium-ion battery cathodes. New. J. Chem. 47, 5244–5248 (2023)

    Article  CAS  Google Scholar 

  15. S. Vijayan, B. Kirubasankar, P. Pazhamalai, A.K. Solarajan, S. Angaiah, Electrospun Nd3+-Doped LiMn2O4 Nanofibers as High-Performance Cathode Material for Li-Ion Capacitors. ChemElectroChem 4, 2059–2067 (2017)

  16. L. Liu, X. Diao, Z. He, Y. Yi, T. Wang, M. Wang, J. Huang, X. He, X. Zhong, K. Du, High-performance all-inorganic portable electrochromic Li-ion hybrid supercapacitors toward safe and smart energy storage. Energy Storage Mater. 33, 258–267 (2020)

    Article  Google Scholar 

  17. P. Hou, J. Feng, Y. Wang, L. Wang, S. Li, L. Yang, S.H. Luo, Study on the properties of Li2MnSiO4 as cathode material for lithium-ion batteries by sol-gel method. Ionics. 26, 1611–1616 (2020)

    Article  CAS  Google Scholar 

  18. Y. Lian, Z. Xu, D. Wang, Y. Bai, C. Ban, J. Zhao, H. Zhang, Nb2O5 quantum dots coated with biomass carbon for ultra-stablelithium-ion supercapacitors. J. Alloy Compd. 850, 156808 (2021)

    Article  CAS  Google Scholar 

  19. H. Wang, C. Guan, X. Wang, H.J. Fan, Energy and Power Li-Ion Capacitor based on a TiO2 nanobelt array anode and a Graphene Hydrogel Cathode. Small. 11, 1470–1477 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. M. Arnaiz, C. Botas, D. Carriazo, R. Mysyk, F. Mijangos, T. Rojo, J. Ajuria, E. Goikolea, Reduced graphene oxide decorated with SnO2 nanoparticles as negative electrode for lithium ion capacitors. Electrochim. Acta. 284, 542–550 (2018)

    Article  CAS  Google Scholar 

  21. S. Sahoo, K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.J. Kim, Copper molybdenum sulfide nanoparticles embedded on graphene sheets as advanced electrodes for wide temperature-tolerant supercapacitors. Inorg. Chem. Front. 6, 1775–1784 (2019)

    Article  CAS  Google Scholar 

  22. P.A. Shinde, N.R. Chodankar, H.J. Kim, M.A. Abdellkareem, A.A. Ghaferi, Y.K. Han, A.G. Olabi, K. Ariga, Ultrastable 1T-2H WS2 heterostructures by Nanoarchitectonics of Phosphorus-Triggered Phase Transition for Hybrid Supercapacitors. ACS Energy Lett. 8, 4474–4487 (2018)

    Article  Google Scholar 

  23. P.A. Shinde, Q. Abbas, N.R. Chodankar, K. Ariga, M.A. Abdelkareem, A.G. Olabi, Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: a review. J. Energy Chem. 79, 611–638 (2023)

    Article  CAS  Google Scholar 

  24. P.A. Shinde, K. Ariga, Two-Dimensional Nanoarchitectonics for two-dimensional materials: Interfacial Engineering of Transition-Metal Dichalcogenides. Langmuir. 39, 18175–18186 (2023)

    Article  CAS  PubMed  Google Scholar 

  25. P.A. Shinde, N.R. Chodankar, M.A. Abdelkareem, S.J. Patil, Y.K. Han, K. Elsaid, Olabi, all Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor. Small. 18, 2200248 (2022)

    Article  CAS  Google Scholar 

  26. X. Chen, W. Tang, L. Cai, Y. Zhu, S. Peng, X. Li, X. Hu, L. Qiao, S. Liu, Superdispersed NiCo2S4 nanoparticles anchored on reduced graphene oxide for efficient hydrogen evolution reaction in acidic and alkaline media. J. Alloy Compound. 918, 165757 (2022)

    Article  CAS  Google Scholar 

  27. M. Wang, W. Tang, S. Liu, X. Liu, X. Chen, X. Hu, L. Qiao, Y. Sui, Design of earth-abundant ternary Fe1 – xCoxS2 on RGO as efficient electrocatalysts for hydrogen evolution reaction. J. Alloy Compound. 862, 158610 (2021)

    Article  CAS  Google Scholar 

  28. J. Zhang, H. Zhang, Y. Zhang, J. Zhang, H. He, X. Zhang, J.J. Shim, S. Zhang, Unveiling of the energy storage mechanisms of multi -modified (Nb2O5@C)/rGO nanoarrays as anode for high voltage supercapacitors with formulated ionic liquid electrolytes. Electrochim. Acta. 313, 532–543 (2019)

    Article  CAS  Google Scholar 

  29. Q. Deng, Y. Fu, C. Zhu, Y. Yu, Niobium-based oxides toward advanced electrochemical energy storage: recent advances and challenges. Small. 15, 1804884 (2019)

    Article  Google Scholar 

  30. S.P. Varghese, B. Babu, R. Prasannachandran, R. Antony, M.M. Shaijumon, Enhanced electrochemical properties of Mn3O4/graphene nanocomposite as efficient anode material for lithium ion batteries 780, 588–596 (2019)

  31. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, S.M. Pawar, C.D. Lokhande, A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl. Surf. Sci. 256(14), 4411–4416 (2010)

    Article  CAS  Google Scholar 

  32. L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, H.Y. Wu, Facile synthesis of MnO2/CNTs composite for Supercapacitor electrodes with Long Cycle Stability. J. Phys. Che C 118, 22865–22872 (2014)

    Article  CAS  Google Scholar 

  33. Y. Zhu, D. Wang, X. Yan, Y. Li, W. Zhou, X. Cheng, B. Geng, Rational design for Mn3O4@carbon foam nanocomposite with 0D@3D structure for boosting Electrochemical Performance. Energy Fuels. 34(11), 14924–14933 (2020)

    Article  CAS  Google Scholar 

  34. Y. Qin, B. Wang, S. Jiang, Q. Jiang, C. Huang, H.C. Chen, Strongly anchored MnO nanoparticles on graphene as high-performance anode materials for lithium-ion batteries. Ionics. 26(7), 3315–3323 (2020)

    Article  CAS  Google Scholar 

  35. C. Liu, Y. Chen, W. Huang, Y. Situ, H. Huang, Birnessite manganese oxide nanosheets assembled on ni foam as high-performance pseudocapacitor electrodes: Electrochemical oxidation driven porous honeycomb architecture formation. Appl. Surf. Sci. 458, 10–17 (2018)

    Article  CAS  Google Scholar 

  36. C. Liu, Y. Chen, X. Sun, B. Chen, Y. Situ, H. Huang, The effect of electrolyte cation on electrochemically induced activation and capacitive performance of Mn3O4 electrodes. Electrochim. Acta. 324, 134894 (2019)

    Article  CAS  Google Scholar 

  37. T.A. Babkova, H. Fei, N.E. Kazantseva, I.Y. Sapirina, P. Saha, Enhancing the supercapacitor performance of flexible MnOxCarbon cloth electrodes by Pd-decoration. Electrochim. Acta. 272, 1–10 (2018)

    Article  CAS  Google Scholar 

  38. C. Liu, Q.Q. Ren, S.W. Zhang, B.S. Yin, L.F. Que, L. Zhao, X.L. Sui, F.D. Yu, X. Li, D.M. Gu, Z.B. Wang, High Energy and Power Lithium-Ion Capacitors based on Mn3O4/3D-Graphene as Anode and activated polyaniline-derived Carbon Nanorods as Cathode. Chem. Eng. J. 370, 1485–1492 (2019)

    Article  CAS  Google Scholar 

  39. F. Gao, J. Qu, Z. Zhao, Q. Zhou, B. Li, J. Qiu, A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon. 80, 640–650 (2014)

    Article  CAS  Google Scholar 

  40. D. Tie, S. Huang, J. Wang, J. Ma, J. Zhang, Y. Zhao, Hybrid energy storage devices: advanced electrode materials and matching principles. Energy Storage Mater. 21, 22–40 (2019)

    Article  Google Scholar 

  41. H. Liu, X. Liu, S. Wang, H.K. Liu, L. Li, Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy Storage Mater. 28, 122–145 (2020)

    Article  Google Scholar 

  42. Z. Li, Z.H. He, J.F. Hou, J.F. Gao, L.B. Kong, Coprecipitation Prepared High-Performance Anode Material KMnF3 for Lithium-Ion Capacitors. Energy Technol. 11(11), 2300585 (2023)

    Article  CAS  Google Scholar 

  43. D. Sui, M. Wu, Y. Liu, Y. Yang, H. Zhang, Y. Ma, L. Zhang, Y. Chen, High performance Li-ion capacitor fabricated with dual graphene-based materials. Nanotechnology. 32, 015403 (2020)

    Article  Google Scholar 

  44. H. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, ChemInform Abstract: Mn3O4-Graphene hybrid as a high-capacity Anode Material for Lithium Ion batteries. Cheminform. 132, 13978–13980 (2010)

    CAS  Google Scholar 

  45. L. Chen, W. Zhai, L. Chen, D. Li, X. Ma, Q. Ai, X. Xu, G. Hou, L. Zhang, Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. J. Power Sources. 392, 116–122 (2018)

    Article  CAS  Google Scholar 

  46. L. Chen, L. Chen, W. Zhai, D.Y. Li, S. Lin, J. Guo, L. Feng, P. Zhang, L. Si, L. Song, J. Ci, Tunable synthesis of LixMnO2 nanowires for aqueous Li-ion hybrid supercapacitor with high rate capability and ultra-long cycle life. J. Power Sources. 413, 302–309 (2019)

    Article  CAS  Google Scholar 

  47. Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, Y. Lu, High-performance supercapacitors based on intertwined CNT/V2O5 Nanowire nanocomposites. Adv. Mater. 23(6), 791–795 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. Y. Ren, J. Li, J. Guo, Perforated active Carbon and Pre-lithiated Graphite electrodes for high performance hybrid Lithium-ion Capacitors. Int. J. Electrochem. Sci. 15, 2659–2666 (2020)

    Article  CAS  Google Scholar 

  49. C. Sun, X. Zhang, C. Li, K. Wang, X. Sun, Y. Ma, High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 24, 160–166 (2019)

    Article  Google Scholar 

  50. Q. Qin, L. Chen, T. Wei, X. Liu, MoS2/NiS yolk – Shell Microsphere-based electrodes for overall water splitting and asymmetric supercapacitor. Small. 15(29), 1803639 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Science and Technology Development Plan Project of Jilin Province (No. YDZJ202101ZYTS187, YDZJ202201ZYTS615), the Projects of Jilin Province Department of Education (No. JJKH20220443KJ, JJKH20230499KJ), and the National Natural Science Foundation of China (No.52072145) are highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, C.Z.; Funding acquisition, C.Z.and L.C; Investigation, S.J. and S.T.; Supervision, P.N.; Validation, P.N.; Visualization, S.T.; Writing-original draft, C.Z. and S.J.; Writing-review and editing, S.T. and X.X. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Cuimei Zhao, Ping Nie or Limin Chang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Jiang, S., Tian, S. et al. Nano-Spheroidal MnOx/C Nanomaterial with Battery-Like and Capacitive Charge Storage for Lithium-Ion Capacitors. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03104-5

Keywords

Navigation