Skip to main content
Log in

Electronic Structure, Long Range Magnetic Order and Elastic Properties of Cerium Based Non-centro Symmetric Intermetallics CeTAl3 (T = Pd, Pt, Cu, Ag and Au)

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Various physical properties of the ternary intermetallics CeTAl3 (T = Pd, Pt, Cu, Ag and Au) are investigated in tetragonal phase with space group I4 mm (No. 107) using generalized gradient approximation (GGA) along with Hubbard potential (U) in the domain of density functional theory (DFT). The calculated results show that the understudy intermetallics are stable in tetragonal symmetry and are found in good agreement with experiments. Magnetic optimization energies show that CePdAl3 is stable in G-type antiferromagnetic (G-AFM) phase, CeTAl3 (T = Cu and Au) are stable in A-AFM, CePtAl3 is spin glass (SG) and CeAgAl3 is stable in ferromagnetic (FM) phase and are confirmed through magnetic susceptibilities. The electronic band profiles, electrical resistivities and electronic thermal conductivities demonstrated the metallic nature of these intermetallics and CePtAl3 is good conductor among this series. The elastic properties show that all these intermetallics are mechanically stable, anisotropic and brittle in nature. The above mention properties make these intermetallics suitable for spintronics, storage and electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data used in the current study are available from the corresponding author on reasonable request.

References

  1. A.I. Bashir, M. Siddique, S. Azam, A.U. Rahman, First-principles quantum-computational analysis on the interplay between intermagnetic and intermetallic properties of lead-doped cerium-bismuthides CePbxBi1-x: a new example of heavy-fermionic magnetic conductors. Comput. Condens. Matter. 31, 00668 (2022). https://doi.org/10.1016/j.cocom.2022.e00668

    Article  Google Scholar 

  2. D.T. Adroja, A. del Moral, C. de la Fuente, A. Fraile, E.A. Goremychkin, J.W. Taylor, A.D. Hillier, F. Fernandez-Alonso, VibronQuasibound state in the non-centro symmetric tetragonal heavy-fermion compound CeCuAl3. Phys. Rev. Lett. 108(21), 216402–216407 (2012). https://doi.org/10.1103/PhysRevLett.108.216402

    Article  ADS  CAS  PubMed  Google Scholar 

  3. S. Liu, J. Zhang, M. Xia, C. Xu, W. Zhou, G. Wu, Z. Shi, Electronic properties of PuNi3-type intermetallic superconductor LaRh3. Phys. C 572, 1353619–1353623 (2020). https://doi.org/10.1016/j.physc.2020.1353619

    Article  ADS  CAS  Google Scholar 

  4. M. Klicpera, P. Javorsky, P. Cermak, A. Schneidewind, B. Ouladdiaf, M. Divis, Neutron scattering study of magnetic order in single-crystalline CeCuAl3. Phys. Rev. B 91(22), 224419–224425 (2015). https://doi.org/10.1103/PhysRevB.91.224419

    Article  ADS  CAS  Google Scholar 

  5. X. Moya, S. Kar-Narayan, N.D. Mathur, Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014). https://doi.org/10.1038/nmat3951

    Article  ADS  CAS  PubMed  Google Scholar 

  6. O. Gutfleisch, M.A. Willard, E. Bruck, C.H. Chen, S.G. Sankar, J.P. Liu, Magnetic materials and devices for the 21st century: stronger, lighter, and more energy e–cient. Adv. Mater. 23, 821–842 (2011). https://doi.org/10.1002/adma.201002180

    Article  CAS  PubMed  Google Scholar 

  7. J.R. Gomez, R.F. Garcia, J.C. Carril, M.R. Gomez, A review of room temperature linear reciprocating magnetic refrigerators. Renew. Sust. Energ. Rev. 21, 1–12 (2013). https://doi.org/10.1016/j.rser.2012.12.018

    Article  Google Scholar 

  8. C. Pfleiderer, Superconducting phases of f-electron compounds. Rev. Mod. Phys. 81(4), 1551–1624 (2009). https://doi.org/10.1103/RevModPhys.81.1551

    Article  ADS  CAS  Google Scholar 

  9. E. Bauer, G. Hilscher, H. Michor, C. Paul, E.W. Scheidt, A. Gribanov, Yu. Seropegin, H. Noel, M. Sigrist, P. Rogl, Heavy fermion superconductivity and magnetic order in non-centrosymmetric CePt3Si. Phys. Rev. Lett. 92(2), 027003–027004 (2004). https://doi.org/10.1103/PhysRevLett.92.027003

    Article  ADS  CAS  PubMed  Google Scholar 

  10. J. Sagar, R. Singh, V. Kumar, S. Kumar, M.P. Singh, R.P. Singh, DFT study of electronic and thermodynamic properties of gold-rich intermetallic compounds, Ce2Au2Cd and CeAu4Cd2. Int. J. Mater. Res. 112(9), 743–752 (2021). https://doi.org/10.1515/ijmr-2020-7955

    Article  CAS  Google Scholar 

  11. Z. Jiaqiang, B. Hu et al., Thermodynamic modeling of the Ag-X (X=B, Fe, Sm, Pu) binary systems. J. Phase Equilibria Difius. 41, 257–268 (2020). https://doi.org/10.1007/s11669-020-00813-5

    Article  CAS  Google Scholar 

  12. W. Gluchowski, Z.M. Rdzawski, Thermal stability of properties in silver - rare earthmetals alloys. J. Achiev. Mater. Manuf. Eng. 8(2), 144–151 (2008)

    Google Scholar 

  13. S.M. Clarke, J.P.S. Walsh, M. Amsler, C.D. Malliakas, T. Yu, S. Goedecker, Y.B. Wang, C. Wolverton, D.E. Freedman, Discovery of a superconducting Cu-Bi intermetallic compound by high-pressure synthesis. Angew. Chem. Int. Ed. 55, 13446–13449 (2016). https://doi.org/10.1002/anie.201605902

    Article  CAS  Google Scholar 

  14. D.L. Wang, H.L. Xin, R. Hovden, H.S. Wang, Y.C. Yu, D.A. Muller, F.J. Disalvo, H.D. Abruna, Structurally ordered intermetallic platinumcobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013). https://doi.org/10.1038/nmat3458

    Article  ADS  CAS  PubMed  Google Scholar 

  15. D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P.D. Yang, Synergistic geometric and electronic efiects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5(1), 1–8 (2014). https://doi.org/10.1038/ncomms5948

    Article  CAS  Google Scholar 

  16. S.P. Luo, W. Chen, Y. Cheng, X. Song, Q.L. Wu, L.X. Li, X.T. Wu, T.H. Wu, M.R. Li, Q. Yang, K.R. Deng, Z.W. Quan, Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 31(40), 1903683–1903690 (2019). https://doi.org/10.1002/adma.201903683

    Article  CAS  Google Scholar 

  17. T. Muranaka, J. Akimitsu, Thermodynamic properties of ferromagnetic Ce-compound, CeAgAl3. Phys. C 460, 688–690 (2007). https://doi.org/10.1016/j.physc.2007.03.127

    Article  ADS  CAS  Google Scholar 

  18. C. Franz, A. Senyshyn, A. Regnat, C. Duvinage, R. Schonmann, A. Bauer, Y. Prots, L. Akselrud, V. Hlukhyy, V. Baran, C. Pfleiderer, Single crystal growth of CeTAl3(T = Cu, Ag, Au, Pd and Pt). J. Alloys Compd. 688, 978–986 (2016). https://doi.org/10.1016/j.jallcom.2016.07.071

    Article  CAS  Google Scholar 

  19. M. Stekiel, P. Cermak, M. Meven, C. Franz, S. Weber, R. Schonmann, V. Kumar, K. Nemkovskiy, H. Deng, A. Bauer, C. Pfleiderer, A. Schneidewind, Magnetic ordering in non-centrosymmetric CePdAl3 and CePtAl3. arXiv Preprint (2021). https://doi.org/10.1103/PhysRevResearch.5.013058

    Article  Google Scholar 

  20. D.T. Adroja, C. De La Fuente, A. Fraile, A.D. Hillier, A. DaoudAladine, W. Kockelmann, J.W. Taylor, M.M. Koza, E. Burzur, F. Luis, J.I. Arnaudas, A. Del Moral, Muon spin rotation and neutron scattering study of the non-centrosymmetric tetragonal compound CeAuAl3. Phys. Rev. B 91(13), 1–12 (2015). https://doi.org/10.1103/PhysRevB.91.134425

    Article  CAS  Google Scholar 

  21. A. Kumar Singh, S. Sarkar, S.C. Peter, Diversity in crystal structure and physical properties of RETX3 (RE–Rare Earth, T-Transition Metal, X–Main Group Element) intermetallics. Chem. Record 22(5), 202100317 (2022). https://doi.org/10.1002/tcr.202100317

    Article  CAS  Google Scholar 

  22. C. Schank, F. Jahrling, L. Luo, A. Grauel, C. Wassilew, R. Borth, G. Olesch, C.D. Bredl, C. Geibel, F. Steglich, 4f-conduction electron hybridization in ternary CeTMAl compounds. J. Alloys Compd. 207, 329–332 (1994). https://doi.org/10.1016/0925-8388(94)90234-8

    Article  Google Scholar 

  23. D. Staško, J. Prchal, P. Proschek, M. Človečko, P. Skyba, S. Gabáni, M. Klicpera, High-pressure study of electronic properties of a CeCuAl3 single crystal. Intermetallics 144, 107518 (2022). https://doi.org/10.1016/j.intermet.2022.107518

    Article  CAS  Google Scholar 

  24. M. Klicpera, P. Javorsky, M. Divis, Magnetization and electrical resistivity measurements on CeCuAl3 single crystal. J. Phys. (2015). https://doi.org/10.1088/1742-6596/592/1/012014

    Article  Google Scholar 

  25. P. Cermak, A. Schneidewind, B. Liu, M.M. Koza, C. Franz, R. Schonmann, O. Sobolev, C. Pfleiderer, Magneto elastic hybrid excitations in CeAuAl3. Proc. Natl. Acad. Sci. 116(14), 6695–6700 (2019). https://doi.org/10.1073/pnas.1819664116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Nallamuthu, A. Dzubinska, M. Reifiers, J. Rodriguez Fernandez, R. Nagalakshmi, Ferromagnetism in orthorhombic RAgAl3 (R = Ce and Pr) compounds. Phys. B 521, 128–133 (2017). https://doi.org/10.1016/j.physb.2017.05.008

    Article  ADS  CAS  Google Scholar 

  27. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406–136410 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  CAS  PubMed  Google Scholar 

  28. P. Novak, J. Kunes, L. Chaput, W.E. Pickett, Exact exchange for correlated electrons. Phys. Stat. Sol. B 243, 563–572 (2006). https://doi.org/10.1002/pssb.200541371

    Article  ADS  CAS  Google Scholar 

  29. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K. Madsen, L.D. Marks, WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152(7), 074101–074131 (2020). https://doi.org/10.1063/1.5143061

    Article  ADS  CAS  PubMed  Google Scholar 

  30. G.K. Madsen, J. Carrete, M.J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi classical transport coe–cients. Comput. Phys. Commun. 231, 140–145 (2018). https://doi.org/10.1016/j.cpc.2018.05.010

    Article  ADS  CAS  Google Scholar 

  31. T. Katsura, Y. Tange, A simple derivation of the Birch-Murnaghan equations of state (EOSs) and comparison with EOSs derived from other definitions of finite strain. Minerals (2019). https://doi.org/10.3390/min9120745

    Article  Google Scholar 

  32. C. Bergmann, H.S. Jeevan, M. Schubert, C. Geibel, P. Gegenwart, Single crystal growth of CeNi2Ge2 using the floating zone technique. Phys. Status Solidi B 247(3), 694–696 (2010). https://doi.org/10.1002/pssb.200983060

    Article  ADS  CAS  Google Scholar 

  33. T. Ebihara, J. Jatmika, A. Miyake, M. Tokunaga, K. Kindo, High-field magnetization and magnetic phase diagrams for three symmetry axes in single-crystal CeAl2. Phys. Rev. B 108(20), 205148 (2023). https://doi.org/10.1103/PhysRevB.108.205148

    Article  ADS  CAS  Google Scholar 

  34. D. Souptel, G. Behr, W. Loser, A. Teresiak, S. Drotziger, C. Pfleiderer, CeSi2¡σ single crystals: growth features and properties. J. Cryst. Growth 269(2–4), 600–616 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.125

    Article  ADS  CAS  Google Scholar 

  35. C. Franz “Untersuchung von Quantem phase nubergangen beifehlender Invers ions symmetrie" Dissertation, Technische Universitt Munchen, Munchen (2014). https://mediatum.ub.tum.de/?id=1188650

  36. D. Souptel, G. Behr, W. Loser, A. Teresiak, S. Drotziger, C. Pfleiderer, CeSi2-σ single crystals: growth features and properties. J. Cryst. Growth 269(2–4), 600–616 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.125

    Article  ADS  CAS  Google Scholar 

  37. M. Klicpera, P. Javorsky, P. Cermak, A. Rudajevova, S. Danis, T. Brunatova, I. Cisarova, Crystal structure and its stability in CeCuAl3 single crystal. Intermetallics 46, 126–130 (2014). https://doi.org/10.1016/j.intermet.2013.11.004

    Article  CAS  Google Scholar 

  38. T. Tsuneda, K. Hirao, Self-interaction corrections in density functional theory. J. Chem. Phys. 140(18), 5131–5213 (2014). https://doi.org/10.1063/1.4866996

    Article  CAS  Google Scholar 

  39. T. Muranaka, J. Akimitsu, Thermodynamic properties of ferromagnetic Ce-compound, CeAgAl3. Phys. C 460–462, 688–690 (2007). https://doi.org/10.1016/j.physc.2007.03.127

    Article  ADS  CAS  Google Scholar 

  40. D.T. Adroja, C. De La Fuente, A. Fraile, A.D. Hillier, A. DaoudAladine, W. Kockelmann, J.W. Taylor, M.M. Koza, E. Burzuri, F. Luis, J.I. Arnaudas, A. Del Moral, Muon spin rotation and neutron scattering study of the noncentrosymmetric tetragonal compound CeAuAl3. Phys. Rev. B 91(13), 1–12 (2015). https://doi.org/10.1103/PhysRevB.91.1344425

    Article  Google Scholar 

  41. A. H.Morrish “The Physical Principles of Magnetism” Wiley-VCH 696. ISBN 0-7803-6029-X., January (2001).

  42. M. Klicpera, P. Javorsky, M. Divis, Magnetization and electrical resistivity measurements on CeCuAl3 single crystal. J. Phys. 592, 012014 (2015). https://doi.org/10.1088/1742-6596/592/1/012014

    Article  CAS  Google Scholar 

  43. M. Shahjahan, I.M. Razzakul, M.M. Rahman, First-principles calculation of stable magnetic state and Curie temperature in transition metal doped III-V semiconductors. Comput. Condens. Matter. (2016). https://doi.org/10.1016/j.cocom.2016.10.001

    Article  Google Scholar 

  44. H. Liu, Resistivity in ordinary and strange metals: a clarification. Phys. Today 65(9), 10–10 (2012). https://doi.org/10.1063/PT.3.1698

    Article  CAS  Google Scholar 

  45. S. Mock, C. Pfleiderer, H. v. Lohneysen, Low-temperature properties of CeTAl3 (T = Au, Cu, Pt) and CeAuGa3. J. Low Temp. Phys. (1999). https://doi.org/10.1023/A:1021838628126

    Article  Google Scholar 

  46. M.M. Wu, L. Wen, B.Y. Tang, L, M. Peng, W. J. Ding, First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg-Sc-Zn alloy. J. Alloys Compd. 506, 412–417 (2012). https://doi.org/10.1016/j.jallcom.2010.07.018

    Article  CAS  Google Scholar 

  47. X. Meng, X. Wen, G. Qin, DFT study on elastic and piezoelectric properties of tetragonal BaTiO3. Comput. Mater. Sci. 49, 372 (2010). https://doi.org/10.1016/j.commatsci.2010.04.026

    Article  Google Scholar 

  48. F. Mouhat, F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90(22), 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104

    Article  ADS  CAS  Google Scholar 

  49. C.S. Man, M. Huang, A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture symmetries. J. Elast. 105, 29–48 (2011). https://doi.org/10.1007/s10659-011-9312-y

    Article  MathSciNet  Google Scholar 

  50. B. Mayer, H. Anton, E. Bott, M. Methfessel et al., Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 11, 23–32 (2003). https://doi.org/10.1016/S0966-9795(02)00127-9

    Article  CAS  Google Scholar 

  51. R.P. Thompson, W.J. Clegg, Predicting whether a material is ductile or brittle. Curr. Opin. Solid State Mater. Sci. 22(3), 100–108 (2018). https://doi.org/10.1016/j.cossms.2018.04.001

    Article  ADS  CAS  Google Scholar 

  52. X. Zeng, R. Peng, Y. Yu, Z. Hu, Y. Wen, L. Song, Pressure effect on elastic constants and related properties of Ti3Al intermetallic compound: a first-principles study. Materials (2018). https://doi.org/10.3390/ma11102015

    Article  PubMed  PubMed Central  Google Scholar 

  53. X. Wang, H. Xiang, X. Sun, J. Liu, F. Hou, Y. Zhou, Mechanical properties and damage tolerance of bulk Yb3Al5O12 ceramic. J. Mater. Sci. Tech. 31, 369 (2015). https://doi.org/10.1016/j.jmst.2015.01.002

    Article  CAS  Google Scholar 

  54. X. Ji, Y. Yu, J.Y. Ji, J.P. Long, J.P. Chen, D.J. Liu, Theoretical studies of the pressure-induced phase transition and elastic properties of BeS. J. Alloys Compd. 623, 304 (2015). https://doi.org/10.1016/j.jallcom.2014.10.151

    Article  CAS  Google Scholar 

  55. S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008). https://doi.org/10.1103/PhysRevLett.101.055504

    Article  ADS  CAS  PubMed  Google Scholar 

  56. X. Liu, Q. Feng, B. Tang, J. Zheng, Z. Zheng, W. Zhou, J. Wang, First-principles calculations of mechanical and thermodynamic properties of tetragonal Be12Ti. RSC Adv. 9(10), 5302–5312 (2019). https://doi.org/10.1039/C8RA08711C

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

IU: software, formal analysis, visualization, writing—original draft preparation, ZA: supervision, project administration, conceptualization, investigation. MM: data curation, methodology, plotting, reviewing and editing. SM: software, formal analysis, methodology, reviewing and editing.

Corresponding author

Correspondence to Zahid Ali.

Ethics declarations

Conflict of interests

The authors affirm that they have no competing interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Ali, Z., Murad, M. et al. Electronic Structure, Long Range Magnetic Order and Elastic Properties of Cerium Based Non-centro Symmetric Intermetallics CeTAl3 (T = Pd, Pt, Cu, Ag and Au). J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03023-5

Keywords

Navigation