Skip to main content
Log in

Potentialities of Bio-functionalized Carbon Nanotubes for Different Anti-cancerous Activities

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The utilization of carbon nanotubes (CNTs) in the field of cancer therapeutics has emerged as a promising avenue of research in recent years. This inquiry delves into the multifaceted potential of bio-functionalized carbon nanotubes for diverse anti-cancer activities. Carbon nanotubes, with their distinct structural and physicochemical properties, offer a versatile platform for innovative approaches in cancer diagnosis, treatment, and comprehension of the underlying molecular mechanisms. The process of bio-functionalizing CNTs plays a pivotal role in enhancing their compatibility with living organisms and specificity, thereby facilitating precise targeting of cancer cells. This scholarly article elucidates the strategies employed for modifying the surface of CNTs and characterizes the bio-functionalized CNTs, setting the stage for their application in anti-cancer therapies. Through a thorough examination of the anti-cancer activities, this research investigates the potential of CNTs to serve as carriers for drug delivery, exemplifying their ability to enhance the availability of drugs and mitigate side effects. Moreover, this study elucidates the diagnostic potential of bio-functionalized CNTs, explicating their applications in cancer imaging, detection, and identification of biomarkers. Mechanistically, the article unveils the pathways through which these nanotubes exert their anti-cancer effects, including the induction of apoptosis and modulation of autophagy. While acknowledging the immense promise of bio-functionalized CNTs, this research also highlights the existing challenges and limitations. Looking toward the future, this article discusses emerging trends in CNT-based cancer therapies, envisioning a future where personalized medicine and nanotechnology converge to revolutionize cancer treatment. Ethical and regulatory considerations are also deliberated upon, emphasizing the need for a responsible and safe transition of these technologies from laboratory experiments to clinical applications. In summary, this study unravels the burgeoning potential of bio-functionalized carbon nanotubes in various anti-cancer activities, underscoring their transformative impact on cancer research and therapy. As the field of nanomedicine continues to expand, these findings contribute to a deeper understanding of the possibilities that lie ahead in the battle against cancer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Feynman, There’s plenty of room at the bottom Richard Feynman: 1960 [1959], in Nanotechnologie als Kollektivsymbol. ed. by N. Frauke (Transcript Verlag, Bielefeld, 2017), pp.459–470. https://doi.org/10.1515/9783839438039-022

    Chapter  Google Scholar 

  2. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  ADS  Google Scholar 

  3. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603–605 (1993). https://doi.org/10.1038/363603a0

    Article  CAS  ADS  Google Scholar 

  4. M. Terrones, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33(1), 419–501 (2003). https://doi.org/10.1146/annurev.matsci.33.012802.100255

    Article  CAS  ADS  Google Scholar 

  5. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Chapter 4 Raman spectroscopy of carbon nanotubes, in Carbon Nanotubes: Quantum Cylinders Of Graphene. ed. by S. Saito, A. Zettl (Elsevier, Amsterdam, 2008), pp.83–108. https://doi.org/10.1016/s1572-0934(08)00004-8

    Chapter  Google Scholar 

  6. T. Maruyama, Carbon nanotubes, in Handbook of Carbon-Based Nanomaterials. ed. by S. Thomas et al. (Elsevier, Amsterdam, 2021), pp.299–319. https://doi.org/10.1016/b978-0-12-821996-6.00009-9

    Chapter  Google Scholar 

  7. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes–the route toward applications. Science 297(5582), 787–792 (2002). https://doi.org/10.1126/science.1060928

    Article  CAS  PubMed  ADS  Google Scholar 

  8. A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 5, 571 (2005). https://doi.org/10.1039/b410943k

    Article  CAS  Google Scholar 

  9. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. Res. 34(1), 247–278 (2004). https://doi.org/10.1146/annurev.matsci.34.040203.114607

    Article  CAS  ADS  Google Scholar 

  10. M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000). https://doi.org/10.1103/physrevlett.84.5552

    Article  CAS  PubMed  ADS  Google Scholar 

  11. M. Meyyappan, L. Delzeit, A. Cassell, D. Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 12(2), 205–216 (2003). https://doi.org/10.1088/0963-0252/12/2/312

    Article  CAS  ADS  Google Scholar 

  12. T. Lin, V. Bajpai, T. Ji, L. Dai, Chemistry of carbon nanotubes. Aust. J. Chem. 56(7), 635 (2003). https://doi.org/10.1071/ch02254

    Article  CAS  Google Scholar 

  13. M. Zhang, J. Li, Carbon nanotube in different shapes. Mater. Today 12(6), 12–18 (2009). https://doi.org/10.1016/s1369-7021(09)70176-2

    Article  CAS  Google Scholar 

  14. Z. Liu, S. Tabakman, K. Welsher, H. Dai, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2(2), 85–120 (2009). https://doi.org/10.1007/s12274-009-9009-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. M. Hiramatsu, M. Hori, Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation. Carbon Nanotubes – Synth. Charact. Appl. (2011). https://doi.org/10.5772/17657

    Article  Google Scholar 

  16. K. Welsher, Z. Liu, S.P. Sherlock, J.T. Robinson, Z. Chen, D. Daranciang, H. Dai, A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4(11), 773–780 (2009). https://doi.org/10.1038/nnano.2009.294

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson, Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30(30), 6041–6047 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.025

    Article  CAS  PubMed  Google Scholar 

  18. R. Singh, S.V. Torti, Carbon nanotubes in hyperthermia therapy. Adv. Drug Deliv. Rev. 65(15), 2045–2060 (2013). https://doi.org/10.1016/j.addr.2013.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. F. Zhou, D. Xing, Z. Ou, B. Wu, D.E. Resasco, W.R. Chen, Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14(2), 021009 (2009). https://doi.org/10.1117/1.3078803

    Article  CAS  PubMed  ADS  Google Scholar 

  20. S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61(7), 1153–1158 (2000). https://doi.org/10.1016/s0022-3697(99)00376-5

    Article  CAS  ADS  Google Scholar 

  21. J.A. Elliott, J.K.W. Sandler, A.H. Windle, R.J. Young, M.S.P. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. (2004). https://doi.org/10.1103/physrevlett.92.095501

    Article  PubMed  Google Scholar 

  22. N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992). https://doi.org/10.1103/physrevlett.68.1579

    Article  CAS  PubMed  ADS  Google Scholar 

  23. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60(18), 2204–2206 (1992). https://doi.org/10.1063/1.107080

    Article  CAS  ADS  Google Scholar 

  24. J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998). https://doi.org/10.1038/34139

    Article  ADS  Google Scholar 

  25. T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662), 62–64 (1998). https://doi.org/10.1038/34145

    Article  CAS  ADS  Google Scholar 

  26. C.M. Lieber, One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun. 107(11), 607–616 (1998). https://doi.org/10.1016/s0038-1098(98)00209-9

    Article  CAS  ADS  Google Scholar 

  27. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409(2), 47–99 (2005). https://doi.org/10.1016/j.physrep.2004.10.006

    Article  ADS  Google Scholar 

  28. V. Neves, E. Heister, S. Costa, C. Tîlmaciu, E. Flahaut, B. Soula, H.M. Coley, J. McFadden, S.R.P. Silva, Design of double-walled carbon nanotubes for biomedical applications. Nanotechnology 23(36), 365102 (2012). https://doi.org/10.1088/0957-4484/23/36/365102

    Article  CAS  PubMed  Google Scholar 

  29. M. Monthioux, P. Serp, B. Caussat, E. Flahaut, M. Razafinimanana, F. Valensi, C. Laurent, A. Peigney, D. Mesguich, A. Weibel, W. Bacsa, J.M. Broto, Carbon nanotubes, in Springer Handbook of Nanotechnology. ed. by B. Bhushan (Springer, Berlin, 2017), pp.193–247. https://doi.org/10.1007/978-3-662-54357-3_8

    Chapter  Google Scholar 

  30. B.P. Grady, The use of solution viscosity to characterize single-walled carbon nanotube dispersions. Macromol. Chem. Phys. 207(23), 2167–2169 (2006). https://doi.org/10.1002/macp.200600473

    Article  CAS  Google Scholar 

  31. H. Gong, R. Peng, Z. Liu, Carbon nanotubes for biomedical imaging: the recent advances. Adv. Drug Deliv. Rev. 65(15), 1951–1963 (2013). https://doi.org/10.1016/j.addr.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  32. N. Punbusayakul, S. Talapatra, P.M. Ajayan, W. Surareungchai, Label-free as-grown double wall carbon nanotubes bundles for Salmonella typhimuriumimmunoassay. Chem. Cent. J. (2013). https://doi.org/10.1186/1752-153x-7-102

    Article  PubMed  PubMed Central  Google Scholar 

  33. I. Ojeda, M. Barrejón, L.M. Arellano, A. González-Cortés, P. Yáñez-Sedeño, F. Langa, J.M. Pingarrón, Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: application to the determination of adiponectin cytokine in serum. Biosens. Bioelectron. 74, 24–29 (2015). https://doi.org/10.1016/j.bios.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  34. F. Kong, F. Liu, W. Li, X. Guo, Z. Wang, H. Zhang, Q. Li, L. Luo, Y. Du, Y. Jin, J. You, Smart carbon nanotubes with laser-controlled behavior in gene delivery and therapy through a non-digestive trafficking pathway. Small 12(48), 6753–6766 (2016). https://doi.org/10.1002/smll.201601092

    Article  CAS  PubMed  Google Scholar 

  35. A. Burke, X. Ding, R. Singh, R.A. Kraft, N. Levi-Polyachenko, M.N. Rylander, C. Szot, C. Buchanan, J. Whitney, J. Fisher, H.C. Hatcher, R. D’Agostino Jr., N.D. Kock, P.M. Ajayan, D.L. Carroll, S. Akman, F.M. Torti, S.V. Torti, Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. 106(31), 12897–12902 (2009). https://doi.org/10.1073/pnas.0905195106

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. C. Wang, L. Xu, C. Liang, J. Xiang, R. Peng, Z. Liu, Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-ctla-4 therapy to inhibit cancer metastasis. Adv. Mater. 26(48), 8154–8162 (2014). https://doi.org/10.1002/adma.201402996

    Article  CAS  PubMed  Google Scholar 

  37. S. Wang, Q. Lin, J. Chen, H. Gao, D. Fu, S. Shen, Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. Carbon 112, 53–62 (2017). https://doi.org/10.1016/j.carbon.2016.10.096

    Article  CAS  Google Scholar 

  38. Z. Liu, A.C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D.W. Felsher, H. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. 121(41), 7804–7808 (2009). https://doi.org/10.1002/ange.200902612

    Article  ADS  Google Scholar 

  39. Y. Zhu, Q. Sun, Y. Liu, T. Ma, L. Su, S. Liu, X. Shi, D. Han, F. Liang, Decorating gold nanostars with multiwalled carbon nanotubes for photothermal therapy. R. Soc. Open Sci. 5(8), 180159 (2018). https://doi.org/10.1098/rsos.180159

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. E. Bekyarova, Y. Ni, E.B. Malarkey, V. Montana, J.L. McWilliams, R.C. Haddon, V. Parpura, Applications of carbon nanotubes in biotechnology and biomedicine. J. Biomed. Nanotechnol. 1(1), 3–17 (2005). https://doi.org/10.1166/jbn.2005.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C. Journet, P. Bernier, Production of carbon nanotubes. Appl. Phys. A Mater. Sci. Process. 67(1), 1–9 (1998). https://doi.org/10.1007/s003390050731

    Article  CAS  ADS  Google Scholar 

  42. M.A. Correa-Duarte, N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie, M. Giersig, Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett. 4(11), 2233–2236 (2004). https://doi.org/10.1021/nl048574f

    Article  CAS  ADS  Google Scholar 

  43. S. Detriche, G. Zorzini, J.-F. Colomer, A. Fonseca, J.B. Nagy, Application of the hansen solubility parameters theory to carbon nanotubes. J. Nanosci. Nanotechnol. 8(11), 6082–6092 (2008). https://doi.org/10.1166/jnn.2008.sw16

    Article  CAS  PubMed  Google Scholar 

  44. P. Wick, P. Manser, L. Limbach, U. Dettlaffweglikowska, F. Krumeich, S. Roth, W. Stark, A. Bruinink, The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168(2), 121–131 (2007). https://doi.org/10.1016/j.toxlet.2006.08.019

    Article  CAS  PubMed  Google Scholar 

  45. T. Coccini, E. Roda, D.A. Sarigiannis, P. Mustarelli, E. Quartarone, A. Profumo, L. Manzo, Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269(1), 41–53 (2010). https://doi.org/10.1016/j.tox.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  46. H. Dai, Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35(12), 1035–1044 (2002). https://doi.org/10.1021/ar0101640

    Article  CAS  PubMed  Google Scholar 

  47. U.S. Shin, I.K. Yoon, G.S. Lee, W.C. Jang, J.C. Knowles, H.W. Kim, Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. J. Tissue Eng. (2011). https://doi.org/10.4061/2011/674287

    Article  PubMed  PubMed Central  Google Scholar 

  48. H. Hu, Y. Ni, V. Montana, R.C. Haddon, V. Parpura, Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 4(3), 507–511 (2004). https://doi.org/10.1021/nl035193d

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. A. Sucapane, G. Cellot, M. Prato, M. Giugliano, V. Parpura, L. Ballerini, Interactions between cultured neurons and carbon nanotubes: a nanoneuroscience vignette. J. Nanoneurosci. 1(1), 10–16 (2009). https://doi.org/10.1166/jns.2009.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. J.L. Gilmore, X. Yi, L. Quan, A.V. Kabanov, Novel nanomaterials for clinical neuroscience. J. Neuroimmune Pharmacol. 3(2), 83–94 (2008). https://doi.org/10.1007/s11481-007-9099-6

    Article  PubMed  PubMed Central  Google Scholar 

  51. A. Nunes, N. Amsharov, C. Guo, J. Van den Bossche, P. Santhosh, T.K. Karachalios, S.F. Nitodas, M. Burghard, K. Kostarelos, K.T. Al-Jamal, Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small 6(20), 2281–2291 (2010). https://doi.org/10.1002/smll.201000864

    Article  CAS  PubMed  Google Scholar 

  52. E. Jan, N.A. Kotov, Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett. 7(5), 1123–1128 (2007). https://doi.org/10.1021/nl0620132

    Article  CAS  PubMed  ADS  Google Scholar 

  53. T.I. Chao, S. Xiang, C.S. Chen, W.C. Chin, A.J. Nelson, C. Wang, J. Lu, Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem. Biophys. Res. Commun. 384(4), 426–430 (2009). https://doi.org/10.1016/j.bbrc.2009.04.157

    Article  CAS  PubMed  Google Scholar 

  54. Y. Ni, H. Hu, E.B. Malarkey, B. Zhao, V. Montana, R.C. Haddon, V. Parpura, Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth. J. Nanosci. Nanotechnol. 5(10), 1707–1712 (2005). https://doi.org/10.1166/jnn.2005.189

    Article  CAS  PubMed  Google Scholar 

  55. F.M. Xu, J.P. Xu, J. Ji, J.C. Shen, A novel biomimetic polymer as amphiphilic surfactant for soluble and biocompatible carbon nanotubes (CNTs). Colloids Surf. B 67(1), 67–72 (2008). https://doi.org/10.1016/j.colsurfb.2008.07.016

    Article  CAS  Google Scholar 

  56. E.B. Malarkey, K.A. Fisher, E. Bekyarova, W. Liu, R.C. Haddon, V. Parpura, Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett. 9(1), 264–268 (2009). https://doi.org/10.1021/nl802855c

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. Z. Liu, S.M. Tabakman, Z. Chen, H. Dai, Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Protoc. 4(9), 1372–1381 (2009). https://doi.org/10.1038/nprot.2009.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Y. Zhang, Y. Xu, Z. Li, T. Chen, S.M. Lantz, P.C. Howard, M.G. Paule, W. Slikker Jr., F. Watanabe, T. Mustafa, A.S. Biris, S.F. Ali, Mechanistic toxicity evaluation of uncoated and pegylated single-walled carbon nanotubes in neuronal PC12 cells. ACS Nano 5(9), 7020–7033 (2011). https://doi.org/10.1021/nn2016259

    Article  CAS  PubMed  Google Scholar 

  59. J.A. Roman, T.L. Niedzielko, R.C. Haddon, V. Parpura, C.L. Floyd, Single-Walled carbon nanotubes chemically functionalized with polyethylene glycol promote tissue repair in a rat model of spinal cord injury. J. Neurotrauma 28(11), 2349–2362 (2011). https://doi.org/10.1089/neu.2010.1409

    Article  PubMed  PubMed Central  Google Scholar 

  60. A.T. Woolley, Methods Mol. Biol. 283, 305–319 (2004)

    CAS  PubMed  Google Scholar 

  61. M. Foldvari, M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed. Nanotechnol. Biol. Med. 4(3), 183–200 (2008). https://doi.org/10.1016/j.nano.2008.04.003

    Article  CAS  Google Scholar 

  62. A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43(2), 190–200 (2009). https://doi.org/10.1021/ar9001069

    Article  CAS  Google Scholar 

  63. V. Leiro, P. Parreira, S.C. Freitas, M.C.L. Martins, A.P. Pêgo, Conjugation chemistry principles and surface functionalization of nanomaterials, in Biomedical Applications of Functionalized Nanomaterials. ed. by B. Sarmento, J. das Neves (Elsevier, Amsterdam, 2018), pp.35–66. https://doi.org/10.1016/b978-0-323-50878-0.00002-1

    Chapter  Google Scholar 

  64. Q. Zhao, Y. Gao, Surface modification and functionalization of nanomaterials for biomedical applications, in Functionalized Nanomaterials for the Management of Microbial Infection. ed. by R. Boukherroub, S. Szunerits, D. Drider (Elsevier, Amsterdam, 2016), pp.117–137

    Google Scholar 

  65. B. Sitharaman, Nanotechnology in cancer therapy: a biocompatible approach. J. Bionanosci. 5(4), 294–312 (2011)

    Google Scholar 

  66. L. Li, W. Jiang, K. Luo, H. Song, F. Lan, Y. Wu, Z. Gu, Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3(8), 595–615 (2013). https://doi.org/10.7150/thno.5366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J.-P. Briand, S. Muller, M. Prato, A. Bianco, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2), 108–113 (2007). https://doi.org/10.1038/nnano.2006.209

    Article  CAS  PubMed  ADS  Google Scholar 

  68. J. Wang, Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1), 7–14 (2005). https://doi.org/10.1002/elan.200403113

    Article  CAS  Google Scholar 

  69. W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114–2138 (2010). https://doi.org/10.1002/anie.200903463

    Article  CAS  Google Scholar 

  70. S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos, Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 19(20), 3214–3228 (2007). https://doi.org/10.1002/adma.200700665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroğlu, K. Vig, V.A. Dennis, S.R. Singh, Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomed. (2012). https://doi.org/10.2147/ijn.s35832

    Article  Google Scholar 

  72. K. Kamil Reza, S. Srivastava, S.K. Yadav, A.M. Biradar, Biofunctionalized carbon nanotubes platform for biomedical applications. Mater. Lett. 126, 126–130 (2014). https://doi.org/10.1016/j.matlet.2014.04.017

    Article  CAS  Google Scholar 

  73. S. Jain, V.S. Thakare, M. Das, C. Godugu, A.K. Jain, R. Mathur, K. Chuttani, A.K. Mishra, Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem. Res. Toxicol. 24(11), 2028–2039 (2011). https://doi.org/10.1021/tx2003728

    Article  CAS  PubMed  Google Scholar 

  74. K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes. Small 1(2), 180–192 (2005). https://doi.org/10.1002/smll.200400118

    Article  CAS  PubMed  Google Scholar 

  75. Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007). https://doi.org/10.1021/nn700040t

    Article  CAS  PubMed  Google Scholar 

  76. I. Mfouo Tynga, H. Abrahamse, Nano-Mediated photodynamic therapy for cancer: enhancement of cancer specificity and therapeutic effects. Nanomaterials 8(11), 923 (2018). https://doi.org/10.3390/nano8110923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. M. Prasad, U.P. Lambe, B. Brar, I. Shah, J. Manimegalai, K. Ranjan, R. Rao, S. Kumar, S. Mahant, S.K. Khurana, H. Iqbal, K. Dhama, J. Misri, G. Prasad, Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother. 97, 1521–1537 (2018). https://doi.org/10.1016/j.biopha.2017.11.026

    Article  CAS  PubMed  Google Scholar 

  78. A. Ediriwickrema, W.M. Saltzman, Nanotherapy for cancer: targeting and multifunctionality in the future of cancer therapies. ACS Biomater. Sci. Eng. 1(2), 64–78 (2015). https://doi.org/10.1021/ab500084g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. G.S.R. Raju, B. Dariya, S.K. Mungamuri, G. Chalikonda, S.-M. Kang, I.N. Khan, P.S. Sushma, G.P. Nagaraju, E. Pavitra, Y.-K. Han, Nanomaterials multifunctional behavior for enlightened cancer therapeutics. Semin. Cancer Biol. 69, 178–189 (2021). https://doi.org/10.1016/j.semcancer.2019.08.013

    Article  CAS  PubMed  Google Scholar 

  80. M.C. Daniel, Drug delivery carriers, in Emerging Applications of Colloidal Noble Metals in Cancer Nanomedicine. ed. by J.R. Lakowicz, J. Zhang (Future Medicine Ltd, London, 2012), pp.54–67. https://doi.org/10.2217/ebo.12.39

    Chapter  Google Scholar 

  81. K. Maier-Hauff, F. Ulrich, D. Nestler, H. Niehoff, P. Wust, B. Thiesen, H. Orawa, V. Budach, A. Jordan, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 103(2), 317–324 (2010). https://doi.org/10.1007/s11060-010-0389-0

    Article  Google Scholar 

  82. O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery. ACS Nano 3(1), 16–20 (2009). https://doi.org/10.1021/nn900002m

    Article  CAS  PubMed  Google Scholar 

  83. Z. Liu, C. Davis, W. Cai, L. He, X. Chen, H. Dai, Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. 105(5), 1410–1415 (2008). https://doi.org/10.1073/pnas.0707654105

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  84. M.E. Davis, J.E. Zuckerman, C.H.J. Choi, D. Seligson, A. Tolcher, C.A. Alabi, Y. Yen, J.D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–1070 (2010). https://doi.org/10.1038/nature08956

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005). https://doi.org/10.1126/science.1104274

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. S. Selvakumar, T. Rajendiran, K. Biswas, Current advances on biomedical applications and toxicity of mwcnts: a review. BioNanoScience 13(2), 860–878 (2023). https://doi.org/10.1007/s12668-023-01110-4

    Article  Google Scholar 

  87. G. Seeta Rama Raju, L. Benton, E. Pavitra, J.S. Yu, Multifunctional nanoparticles: recent progress in cancer therapeutics. Chem. Commun. 51(68), 13248–13259 (2015). https://doi.org/10.1039/c5cc04643b

    Article  CAS  Google Scholar 

  88. A. Stojadinovic, I. Avital, G.E. Peoples, S. Steele, Special issue on current challenges and future directions in monitoring recurrence after treatment of primary cancer. J. Cancer 5(4), 260–261 (2014). https://doi.org/10.7150/jca.9070

    Article  PubMed  PubMed Central  Google Scholar 

  89. J. Zugazagoitia, C. Guedes, S. Ponce, I. Ferrer, S. Molina-Pinelo, L. Paz-Ares, Current challenges in cancer treatment. Clin. Ther. 38(7), 1551–1566 (2016). https://doi.org/10.1016/j.clinthera.2016.03.026

    Article  PubMed  Google Scholar 

  90. J.A. Ludwig, J.N. Weinstein, Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5(11), 845–856 (2005). https://doi.org/10.1038/nrc1739

    Article  CAS  PubMed  Google Scholar 

  91. N. Kamaly, Z. Xiao, P.M. Valencia, A.F. Radovic-Moreno, O.C. Farokhzad, Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41(7), 2971 (2012). https://doi.org/10.1039/c2cs15344k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. K.K. Jain, Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta 358(1–2), 37–54 (2005). https://doi.org/10.1016/j.cccn.2005.03.014

    Article  CAS  PubMed  Google Scholar 

  93. Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Drug Delivery with carbon nanotubes for in vivo cancer treatment. Can. Res. 68(16), 6652–6660 (2008). https://doi.org/10.1158/0008-5472.can-08-1468

    Article  CAS  Google Scholar 

  94. A.A. Bhirde, V. Patel, J. Gavard, G. Zhang, A.A. Sousa, A. Masedunskas, R.D. Leapman, R. Weigert, J.S. Gutkind, J.F. Rusling, Targeted killing of cancer cells in vivo and in vitro with egf-directed carbon nanotube-based drug delivery. ACS Nano 3(2), 307–316 (2009). https://doi.org/10.1021/nn800551s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. S. Prabhu, P. Ananthanarayanan, S.K. Aziz, S. Rai, S. Mutalik, S.R.B. Sadashiva, Enhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicity. Toxicol. Appl. Pharmacol. 320, 6072 (2017)

    Article  Google Scholar 

  96. M. Rasoulzadeh, H. Namazi, Carboxymethyl cellulose/graphene oxide bionanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr. Polym. 168, 320326 (2017)

    Article  Google Scholar 

  97. R. Dhivya, J. Ranjani, P.K. Bowen, J. Rajendhran, J. Mayandi, J. Annaraj, Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells. Mater. Sci. Eng. C 80, 59–68 (2017). https://doi.org/10.1016/j.msec.2017.05.128

    Article  CAS  Google Scholar 

  98. E.A. Nivethaa, S. Dhanavel, A. Rebekah, V. Narayanan, A. Stephen, A comparative study of 5-Fluorouracil release from chitosan/silver and chitosan/silver/MWCNT nanocomposites and their cytotoxicity towards MCF-7. Mater. Sci. Eng. C 66, 244–250 (2016). https://doi.org/10.1016/j.msec.2016.04.080

    Article  CAS  Google Scholar 

  99. L. Zhang, K. Xia, Z. Lu, X. Shuai, Targeted therapy for cancer with prostate-specific membrane antigen (PSMA) and survivin dual-targeted gold nanoparticles. Eur. J. Pharm. Biopharm. 107, 174–181 (2016)

    Google Scholar 

  100. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007). https://doi.org/10.1038/nnano.2007.387

    Article  CAS  PubMed  ADS  Google Scholar 

  101. J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2016). https://doi.org/10.1038/nrc.2016.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. A. Jasim, S. Abdelghany, K. Greish, Current update on the role of enhanced permeability and retention effect in cancer nanomedicine, in Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. ed. by V. Mishra et al. (Elsevier, 2017), pp.62–109. https://doi.org/10.1016/b978-0-12-809717-5.00002-6

    Chapter  Google Scholar 

  103. Q. Zhang, Y. Zhang, Y. Ji, Leveraging the enhanced permeability and retention effect for tumor targeting nanomedicine. J. Nanomater. 2017, 1–12 (2017)

    CAS  ADS  Google Scholar 

  104. M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5(3), 161–171 (2005). https://doi.org/10.1038/nrc1566

    Article  CAS  PubMed  Google Scholar 

  105. O. Tacar, P. Sriamornsak, C.R. Dass, Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 65(2), 157–170 (2012). https://doi.org/10.1111/j.2042-7158.2012.01567.x

    Article  CAS  PubMed  Google Scholar 

  106. A. Wicki, D. Witzigmann, V. Balasubramanian, J. Huwyler, Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release 200, 138–157 (2015). https://doi.org/10.1016/j.jconrel.2014.12.030

    Article  CAS  PubMed  Google Scholar 

  107. H. Maeda, Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91, 3–6 (2015). https://doi.org/10.1016/j.addr.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  108. J. Hrkach, D. Von Hoff, M.M. Ali, E. Andrianova, J. Auer, T. Campbell, D. De Witt, M. Figa, M. Figueiredo, A. Horhota, S. Low, K. McDonnell, E. Peeke, B. Retnarajan, A. Sabnis, E. Schnipper, J.J. Song, Y.H. Song, J. Summa et al., Preclinical development and clinical translation of a psma-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. (2012). https://doi.org/10.1126/scitranslmed.3003651

    Article  PubMed  Google Scholar 

  109. K.C. Anderson, Progress and paradigms in multiple myeloma. Clin. Cancer Res. 22(22), 5419–5427 (2016). https://doi.org/10.1158/1078-0432.ccr-16-0625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. S.V. Rajkumar, Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 91(7), 719–734 (2016). https://doi.org/10.1002/ajh.24402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. N. Raje, J. Berdeja, Y. Lin, D. Siegel, S. Jagannath, D. Madduri, M. Liedtke, J. Rosenblatt, M.V. Maus, A. Turka, L.-P. Lam, R.A. Morgan, K. Friedman, M. Massaro, J. Wang, G. Russotti, Z. Yang, T. Campbell, K. Hege et al., Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380(18), 1726–1737 (2019). https://doi.org/10.1056/nejmoa1817226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. M. Mohammadi, M. Salavati-Niasari, A review on the recent progress, challenges and perspectives of self-healing nanocomposite hydrogels. Polymer 211, 123098 (2020)

    Google Scholar 

  113. F. Cheng, H. Chen, H. Li, Recent advances in tough and self-healing nanocomposite hydrogels for shape morphing and soft actuators. Eur. Polymer J. 124, 109448 (2020). https://doi.org/10.1016/j.eurpolymj.2019.109448

    Article  CAS  Google Scholar 

  114. B.W. Smith, M. Monthioux, D.E. Luzzi, Encapsulated C60 in carbon nanotubes. Nature 396(6709), 323–324 (1998). https://doi.org/10.1038/24521

    Article  CAS  Google Scholar 

  115. R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123(16), 3838–3839 (2001). https://doi.org/10.1021/ja010172b

    Article  CAS  PubMed  Google Scholar 

  116. J. Li, Y. Lu, E.S. Yeung, Quantitative analysis of single-molecule DNA bending. Analyst 127(7), 908–912 (2002)

    ADS  Google Scholar 

  117. Z. Wang, M. Gerstein, M. Snyder, RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009). https://doi.org/10.1038/nrg2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. R. Aebersold, M. Mann, Mass spectrometry-based proteomics. Nature 422(6928), 198–207 (2003). https://doi.org/10.1038/nature01511

    Article  CAS  PubMed  ADS  Google Scholar 

  119. E.F. Petricoin III., A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M. Steinberg, G.B. Mills, C. Simone, D.A. Fishman, E.C. Kohn, L.A. Liotta, Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306), 572–577 (2002). https://doi.org/10.1016/s0140-6736(02)07746-2

    Article  CAS  PubMed  Google Scholar 

  120. J. Shendure, G.J. Porreca, N.B. Reppas, X. Lin, J.P. McCutcheon, A.M. Rosenbaum, M.D. Wang, K. Zhang, R.D. Mitra, G.M. Church, Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309(5741), 1728–1732 (2005). https://doi.org/10.1126/science.1117389

    Article  CAS  PubMed  ADS  Google Scholar 

  121. J.L. Spratlin, N.J. Serkova, S.G. Eckhardt, Clinical applications of metabolomics in oncology: a review. Clin. Cancer Res. 15(2), 431–440 (2009). https://doi.org/10.1158/1078-0432.ccr-08-1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. M.V. Berridge, P.M. Herst, A.S. Tan, Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction, in Biotechnology Annual Review. ed. by M.R. El-Gewely (Elsevier, Amsterdam, 2005), pp.127–152. https://doi.org/10.1016/s1387-2656(05)11004-7

    Chapter  Google Scholar 

  123. J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, T.R. Golub, MicroRNA expression profiles classify human cancers. Nature 435(7043), 834–838 (2005). https://doi.org/10.1038/nature03702

    Article  CAS  PubMed  ADS  Google Scholar 

  124. R.L. Wahl, H. Jacene, Y. Kasamon, M.A. Lodge, From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50(Suppl 1), 122S-150S (2009). https://doi.org/10.2967/jnumed.108.057307

    Article  CAS  PubMed  Google Scholar 

  125. J.C.M. Wan, C. Massie, J. Garcia-Corbacho, F. Mouliere, J.D. Brenton, C. Caldas, S. Pacey, R. Baird, N. Rosenfeld, Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17(4), 223–238 (2017). https://doi.org/10.1038/nrc.2017.7

    Article  CAS  PubMed  Google Scholar 

  126. E. Wang, J. Zou, N. Zaman, L.K. Beitel, M. Trifiro, M. Paliouras, Cancer systems biology in the genome sequencing era: Part 1, dissecting and modeling of tumor clones and their networks. Semin. Cancer Biol. 23(4), 279–285 (2013). https://doi.org/10.1016/j.semcancer.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  127. C.H. Xia, W.X. Yu, B.Q. Wang, Y. Wang, & L. Wang, The primary mechanism of photoexcited tio2 nanoparticles-induced apoptosis in human hepatoma bel-7402 cells. 2008 International Conference on BioMedical Engineering and Informatics, 2008 https://doi.org/10.1109/bmei.2008.158

  128. X. Wang, Z. Liu, Z. Yu, Research on MWCNTs induced apoptosis of BEL-7402 cells in vitro and the mechanism. Colloids Surf. B 82(1), 41–47 (2011)

    Article  Google Scholar 

  129. B. Levine, G. Kroemer, Autophagy in the pathogenesis of disease. Cell 132(1), 27–42 (2008). https://doi.org/10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. R.K. Amaravadi, A.C. Kimmelman, J. Debnath, Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9(9), 1167–1181 (2019). https://doi.org/10.1158/2159-8290.cd-19-0292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. J. Chen, S. Chen, X. Zhao, L.V. Kuznetsova, S.S. Wong, I. Ojima, Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc. 130(49), 16778–16785 (2008). https://doi.org/10.1021/ja805570f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. J. Meng, M. Yang, F. Jia, Z. Xu, H. Kong, H. Xu, Immune responses of BALB/c mice to subcutaneously injected multi-walled carbon nanotubes. Nanotoxicology 5(4), 583–591 (2010). https://doi.org/10.3109/17435390.2010.523483

    Article  CAS  PubMed  Google Scholar 

  133. Y. Zhu, B. Zhang, G. Liu, J. He, M. Li, X. Zeng, A PEGylated fluoranthene polymer encapsulated NIR nanosystem with a high capacity for thermal ablation and photothermal therapy of cancer cells in vitro. J. Mater. Chem. 21(32), 12003–12010 (2011)

    Google Scholar 

  134. A.Z. Wang, V. Bagalkot, C.C. Vasilliou, F. Gu, F. Alexis, L. Zhang, M. Shaikh, K. Yuet, M.J. Cima, R. Langer, P.W. Kantoff, N.H. Bander, S. Jon, O.C. Farokhzad, Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 3(9), 1311–1315 (2008). https://doi.org/10.1002/cmdc.200800091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. X. Wang, T. Xia, S. Addo Ntim, Z. Ji, S. Lin, H. Meng, C.H. Chung, S. George, H. Zhang, M. Wang, N. Li, Y. Yang, V. Castranova, S. Mitra, J.C. Bonner, A.E. Nel, Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5(12), 9772–9787 (2011). https://doi.org/10.1021/nn2033055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. F. Chen, H. G. Evans, & P.R. Choo, Safety and health considerations for the use of nanomaterials in the construction industry. In Nanotechnology in Construction 3 (Springer, 2013), pp. 27–34

  137. X. Chen, U.C. Tam, J.L. Czlapinski, G.S. Lee, D. Rabuka, A. Zettl, C.R. Bertozzi, Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128(19), 6292–6293 (2006). https://doi.org/10.1021/ja060276s

    Article  CAS  PubMed  Google Scholar 

  138. L. Chen, H. Xie, W. Yu, Functionalization methods of carbon nanotubes and its applications. Carbon Nanotubes Appl. Electron Dev. (2011). https://doi.org/10.5772/18547

    Article  Google Scholar 

  139. J. Chen, S. Chen, X. Zhao, L. Kuznetsova, S.S. Wong, I. Ojima, Functionalization of carbon nanotubes for potential therapeutic applications. Nanoscale Res. Lett. 6(1), 571 (2011)

    ADS  Google Scholar 

  140. F. Chen, H.G. Evans, In vitro studies on the biomolecular corona of gold nanoparticles. Toxicol. Lett. 222(3), 289–293 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, as well as the International Research Centre, Centre for Nanoscience and Nanotechnology, SIST, Chennai, for conducting the research.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors made contributions to the conceptualization and design of the study. GBR: were responsible for the preparation of materials, collection and analysis of data, PS: drafted the work and revised it critically for important intellectual content and KB: drafted and approved the version to be published. The final version of the manuscript was reviewed and approved by all authors.

Corresponding author

Correspondence to Kunal Biswas.

Ethics declarations

Competing interests

The authors have no financial or non-financial interests to disclose.

Ethical Approval

This is an observational study therefore no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, G.B., Singh, P. & Biswas, K. Potentialities of Bio-functionalized Carbon Nanotubes for Different Anti-cancerous Activities. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03012-8

Keywords

Navigation