Skip to main content

Advertisement

Log in

Nano-micellar Aggregates of Anticancer Cisplatin-Conjugated Poly(carboxylated 2-isopropenyl 2-oxazoline)-mPEG Copolymers

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Cisplatin is an anticancer drug that can be used to treat a variety of solid tumors, where clinical use may be affected by several factors, including dose-limiting side effects and the emergence of drug resistance. Micellar-forming polymeric conjugates are a type of polymeric nanocarrier that can preferentially accumulate in tumors, thereby increasing therapeutic efficacy. In the current study, carboxylated PiPOx was synthesized first using a click reaction of 2-isopropenyl 2-oxazoline (iPOx) with thioglycolic acid (TGA) or methyl thioglycolate, followed by methyl triflate-initiated cationic ring opening polymerization (CROP). Next, different strategies were employed to prepare carboxylated PiPOx-mPEG copolymers: (a) CROP was initiated by iPOx-modified mPEG-thiol, (b) TGA-modified PiPOx were end-capped with mPEG-NH2, or (c) TGA-modified iPOx and iPOx-modified mPEG-thiol were randomly copolymerized. 1H-NMR, FT-IR, SEC, and potentiometric titration methods were used to characterize the synthesized polymers. Cisplatin-polymer conjugation was performed at three ratios of drug-to-polymer carboxyl groups (0.25, 0.5, and 1), and the conjugated cisplatin content was determined using UV–vis spectroscopy at 705 nm with O-phenylenediamine reagent. The cisplatin loading efficiencies (%) were 59.3, 26.7, and 91.0 for the respective copolymers at the chosen cisplatin/carboxyl 1:1 mol ratio. Cisplatin-conjugated PiPOx(TGA)-b-mPEG and mPEG-g-PiPOx(TGA) had mean hydrodynamic sizes of 113.3 and 178.8 nm, respectively. TEM imaging confirmed the formation of discrete and spherical particles of the cisplatin-conjugated copolymer. The MTT cytotoxicity assay demonstrated higher cytotoxicity of PiPOx(TGA)-b-mPEG compared to PiPOx(TGA)-g-mPEG polymers in both sensitive and resistant ovarian cancer cells. The IC50 values were approximately 113 µg/ml for PiPOx(TGA)-b-mPEG and 232 µg/ml for PiPOx(TGA)-g-mPEG in resistant tumor cells, confirming the potential application of cisplatin-conjugated copolymers in cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A2780R:

A2780 cisplatin resistant

A2780S:

A2780 cisplatin sensitive

CROP:

Cationic ring opening polymerization

DIPEA, N:

N-diisopropylethylamine

DMF:

N,N-dimethylformamide

DMSO:

dimethyl sulfoxide

DTNB:

5,5-Dithio-bis-(2-nitrobenzoic acid)

EDTA:

Ethylenedinitrilotetraacetic acid

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid)

iPOx:

2-Isopropenyl 2-oxazoline

mPEG:

Methoxy polyethylene glycol

MTG:

Methyl thioglycolate

PiPOx:

Poly (2-isopropenyl 2-oxazoline)

PiPOx(MTG):

Poly (2-isopropenyl 2-oxazoline)-methyl thioglycolate

PiPOx(TGA):

Poly (2-isopropenyl 2-oxazoline)-thioglycolic acid

Pox:

Poly-2-oxazoline

RPMI:

Roswell Park Memorial Institute

SEC:

Size exclusion chromatography

TEM:

Transmission electron microscopy

TGA:

Thioglycolic acid

THF:

Tetrahydrofuran

References

  1. P.A. Andrews, S. Velury, S.C. Mann, S.B. Howell, Cis-Diamminedichloroplatinum (II) accumulation in sensitive and resistant human ovarian carcinoma cells. Cancer Res. 48(1), 68–73 (1988)

    CAS  PubMed  Google Scholar 

  2. M. Ikeguchi, S. Nakamura, N. Kaibara, Quantitative analysis of expression levels of bax, bcl-2, and survivin in cancer cells during cisplatin treatment. Oncol. Rep. 9(5), 1121–1126 (2002)

    CAS  PubMed  Google Scholar 

  3. S. Ganesh, A.K. Iyer, J. Weiler, D.V. Morrissey, M.M. Amiji, Combination of siRNA-directed gene silencing with cisplatin reverses drug resistance in human non-small cell lung cancer. Mol. Therapy-Nucleic Acids 2, e110 (2013)

    Article  Google Scholar 

  4. R.S. Pillai, MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11(12), 1753–1761 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Abolmaali, A. Tamaddon, M. Salmanpour, S. Mohammadi, R. Dinarvand, Block ionomer micellar nanoparticles from double hydrophilic copolymers, classifications and promises for delivery of cancer chemotherapeutics. Eur. J. Pharm. Sci. 104, 393–405 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. F. Canal, J. Sanchis, M.J. Vicent, Polymer–drug conjugates as nano-sized medicines. Curr. Opin. Biotechnol. 22(6), 894–900 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. H.S. Oberoi, N.V. Nukolova, F.C. Laquer, L.Y. Poluektova, J. Huang, Y. Alnouti et al., Cisplatin-loaded core cross-linked micelles: comparative pharmacokinetics, antitumor activity, and toxicity in mice. Int. J. Nanomed. 7, 2557–2571 (2012)

    Article  CAS  Google Scholar 

  8. X. Wan, J.J. Beaudoin, N. Vinod, Y. Min, N. Makita, H. Bludau et al., Co-delivery of paclitaxel and cisplatin in poly(2-oxazoline) polymeric micelles: implications for drug loading, release, pharmacokinetics and outcome of ovarian and breast cancer treatments. Biomaterials 192, 1–14 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. D. Zhang, J. Li, H. Xie, A. Zhu, Y. Xu, B. Zeng et al., Polyion complex micelles formed by azobenzene-based polymer with multi-responsive properties. J. Appl. Polym. Sci. 138(24), 50580 (2021)

    Article  CAS  Google Scholar 

  10. F. Farvadi, A. Tamaddon, Z. Sobhani, S.S. Abolmaali, Polyionic complex of single-walled carbon nanotubes and PEG-grafted-hyperbranched polyethyleneimine (PEG-PEI-SWNT) for an improved doxorubicin loading and delivery: development and in vitro characterization. Artif. Cells Nanomed. Biotechnol. 45(5), 855–863 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. S. Minko, Grafting on solid surfaces:“grafting to” and “grafting from” methods, in Polymer Surfaces and Interfaces. (Springer, Berlin, 2008), pp.215–234

    Chapter  Google Scholar 

  12. M. Bauer, C. Lautenschlaeger, K. Kempe, L. Tauhardt, U.S. Schubert, D. Fischer, Poly (2-ethyl‐2‐oxazoline) as alternative for the Stealth Polymer Poly (ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol. Biosci. 12(7), 986–998 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. R. Luxenhofer, G. Sahay, A. Schulz, D. Alakhova, T.K. Bronich, R. Jordan et al., Structure-property relationship in cytotoxicity and cell uptake of poly (2-oxazoline) amphiphiles. J. Controlled Release 153(1), 73–82 (2011)

    Article  CAS  Google Scholar 

  14. B. Pidhatika, M. Rodenstein, Y. Chen, E. Rakhmatullina, A. Mühlebach, C. Acikgöz et al., Comparative stability studies of poly (2-methyl-2-oxazoline) and poly (ethylene glycol) brush coatings. Biointerphases. 7(1–4), 1 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. R. Luxenhofer, Y. Han, A. Schulz, J. Tong, Z. He, A.V. Kabanov et al., Poly (2-oxazoline) s as polymer therapeutics. Macromol. Rapid Commun. 33(19), 1613–1631 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Salmanpour, G. Yousefi, S. Mohammadi-Samani, M. Abedanzadeh, A.M. Tamaddon, Hydrolytic stabilization of irinotecan active metabolite (SN38) against physiologic pH through self-assembly of conjugated poly (2-oxazoline)-poly (l-amino acid) block copolymer: a-synthesis and physicochemical characterization. J. Drug Deliv. Sci. Technol. 60, 101933 (2020)

    Article  CAS  Google Scholar 

  17. M. Salmanpour, G. Yousefi, S.M. Samani, S. Mohammadi, M.H. Anbardar, A. Tamaddon, Nanoparticulate delivery of irinotecan active metabolite (SN38) in murine colorectal carcinoma through conjugation to poly (2-ethyl 2-oxazoline)-b-poly (l-glutamic acid) double hydrophilic copolymer. Eur. J. Pharm. Sci. 136, 104941 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. V. de la Rosa, Poly (2-oxazoline) s as materials for biomedical applications. J. Mater. Sci. Mater. Med. 25, 1211–1225 (2014)‏‏

    Article  Google Scholar 

  19. R. Hoogenboom, H.M. Thijs, M.J. Jochems, B.M. van Lankvelt, M.W. Fijten, U.S. Schubert, Tuning the LCST of poly (2-oxazoline) s by varying composition and molecular weight: alternatives to poly (N-isopropylacrylamide)? Chem. Commun. (2008). https://doi.org/10.1039/b813140f

    Article  Google Scholar 

  20. C. Weber, T. Neuwirth, K. Kempe, B. Ozkahraman, E. Tamahkar, H. Mert et al., 2-Isopropenyl-2-oxazoline: a versatile monomer for functionalization of polymers obtained via RAFT. Macromolecules 45(1), 20–27 (2012)

    Article  CAS  Google Scholar 

  21. H. Ye, L. Jin, R. Hu, Z. Yi, J. Li, Y. Wu et al., Poly (γ, l-glutamic acid)–cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials 27(35), 5958–5965 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. H. Yu, Z. Tang, M. Li, W. Song, D. Zhang, Y. Zhang et al., Cisplatin loaded poly (l-glutamic acid)-g-methoxy poly (ethylene glycol) complex nanoparticles for potential cancer therapy: preparation, in vitro and in vivo evaluation. J. Biomed. Nanotechnol. 12(1), 69–78 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. N. Nishiyama, M. Yokoyama, T. Aoyagi, T. Okano, Y. Sakurai, K. Kataoka, Preparation and characterization of self-assembled polymer—metal complex micelle from cis-dichlorodiammineplatinum (II) and poly (ethylene glycol)—poly (α, β-aspartic acid) block copolymer in an aqueous medium. Langmuir 15(2), 377–383 (1999)

    Article  CAS  Google Scholar 

  24. S. Javanmardi, A.M. Tamaddon, M.R. Aghamaali, L. Ghahramani, S.S. Abolmaali, Redox-sensitive, PEG-shielded carboxymethyl PEI nanogels silencing MicroRNA-21, sensitizes resistant ovarian cancer cells to cisplatin. Asian J. Pharm. Sci. 15(1), 69–82 (2020)

    Article  PubMed  Google Scholar 

  25. C. Cheng, D. Xia, X. Zhang, L. Chen, Q. Zhang, Biocompatible poly (N-isopropylacrylamide)-g-carboxymethyl chitosan hydrogels as carriers for sustained release of cisplatin. J. Mater. Sci. 50, 4914–4925 (2015)

    Article  CAS  Google Scholar 

  26. S.S. Abolmaali, A. Tamaddon, H. Najafi, R. Dinarvand, Effect of l-Histidine substitution on sol–gel of transition metal coordinated poly ethyleneimine: synthesis and biochemical characterization. J. Inorg. Organomet. Polym. Mater. 24(6), 977–987 (2014)

    Article  CAS  Google Scholar 

  27. S.S. Abolmaali, A. Tamaddon, G. Yousefi, K. Javidnia, R. Dinarvand, Sequential optimization of methotrexate encapsulation in micellar nano-networks of polyethyleneimine ionomer containing redox-sensitive cross-links. Int. J. Nanomed. 9, 2833 (2014)

    Google Scholar 

  28. S.S. Abolmaali, A.M. Tamaddon, R. Dinarvand, Nano-hydrogels of methoxy polyethylene glycol-grafted branched polyethyleneimine via biodegradable cross-linking of Zn2+-ionomer micelle template. J. Nanopart. Res. 15(12), 1–21 (2013)

    Article  Google Scholar 

  29. N. Nishiyama, Y. Kato, Y. Sugiyama, K. Kataoka, Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm. Res. 18(7), 1035–1041 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. A.B. Lowe, Thiol–ene click reactions and recent applications in polymer and materials synthesis: a first update. Polym. Chem. 5(17), 4820–4870 (2014)

    Article  CAS  Google Scholar 

  31. K. Bir, J.C. Crawhall, D. Mauldin, Reduction of disulfides with sodium and potassium borohydrides and its application to urinary disulfides. Clin. Chim. Acta 30(1), 183–190 (1970)

    Article  CAS  PubMed  Google Scholar 

  32. C.E. Hoyle, C.N. Bowman, Thiol–ene click chemistry. Angew. Chem. Int. Ed. 49(9), 1540–1573 (2010)

    Article  CAS  Google Scholar 

  33. A.B. Lowe, Thiol–ene click reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1(1), 17–36 (2010)

    Article  CAS  Google Scholar 

  34. M.A. Cortez, S.M. Grayson, Thiol–ene click functionalization and subsequent polymerization of 2-oxazoline monomers. Macromolecules 43(9), 4081–4090 (2010)

    Article  CAS  Google Scholar 

  35. H.S. Oberoi, N.V. Nukolova, A.V. Kabanov, T.K. Bronich, Nanocarriers for delivery of platinum anticancer drugs. Adv. Drug Deliv. Rev 65(13–14), 1667–1685 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. E. Rossegger, V. Schenk, F. Wiesbrock, Design strategies for functionalized poly (2-oxazoline) s and derived materials. Polymers 5(3), 956–1011 (2013)

    Article  Google Scholar 

  37. D. Zhou, Y. Cong, Y. Qi, S. He, H. Xiong, Y. Wu et al., Overcoming tumor resistance to cisplatin through micelle-mediated combination chemotherapy. Biomater. Sci. 3(1), 182–191 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. C. Brunot, L. Ponsonnet, C. Lagneau, P. Farge, C. Picart, B. Grosgogeat, Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials 28(4), 632–640 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. E. Fröhlich, The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577 (2012)

    Article  Google Scholar 

  40. V.T. Huynh, G. Chen, M.H. Souza Pd, Stenzel, Thiol–yne and thiol–ene click chemistry as a tool for a variety of platinum drug delivery carriers, from statistical copolymers to crosslinked micelles. Biomacromolecules 12(5), 1738–1751 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The facility supports of “Center for Nanotechnology in Drug Delivery” are gratefully acknowledged.

Funding

This research has been financially supported by Shiraz University of Medical Sciences (SUMS) Grant No. 8988.

Author information

Authors and Affiliations

Authors

Contributions

ZSHR: methodology, investigation, analysis, writing original draft; SSA: conceptualization, project administration, supervision, methodology, analysis, manuscript review and editing; MS: methodology, formal analysis, manuscript review and editing; SB: methodology, formal analysis, manuscript review and editing; SM, methodology, formal analysis, manuscript review and editing; AMT: conceptualization, methodology, manuscript review and editing.

Corresponding authors

Correspondence to Samira Sadat Abolmaali or Ali Mohammad Tamaddon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini Rezaei, Z.S., Abolmaali, S.S., Salmanpour, M. et al. Nano-micellar Aggregates of Anticancer Cisplatin-Conjugated Poly(carboxylated 2-isopropenyl 2-oxazoline)-mPEG Copolymers. J Inorg Organomet Polym 34, 1121–1135 (2024). https://doi.org/10.1007/s10904-023-02877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02877-5

Keywords

Navigation