Skip to main content
Log in

Green Immobilized Silver Nanoparticles Over Mentha spicata Flower Extract Modified Reduced Graphene Oxide: Investigation of its Antioxidant and Anti-liver Cancer Effects

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The current work has been dedicated to the research studies on the development of green formulated nanomedicines to combat the hepatocellular carcinoma or liver cancer. Plant derived biogenic nanocomposite has been a major focus these days in the biological studies. So, herein we are prompted to develop a biocompatible and biodegradable carbonaceous nanocomposite where silver nanoparticles (Ag NPs) have been fabricated over the reduced graphene oxide (RGO) bio-inspired by Mentha spicata flower extract (RGO/M.S./Ag). The material has been methodically analyzed by advanced techniques like Fourier Transform Infrared Spectroscopy (FT-IR), Field Emission Scanning Electron Microscopes (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD). Thereafter, the material was involved in the estimation of antioxidant properties by (2,2-Diphenyl-1-picrylhydrazyl) DPPH radical scavenging method. The biological evaluation was further comprehended in the cytotoxic studies against the HepG2 (human hepatoma) liver cancer cell line in-vitro following Multi-Table Tournament (MTT) process. Interestingly, the material afforded % toxicity over the malignant cell line that reduced dose-dependently with its concentration. The inertness of RGO/M.S./Ag material towards normal cells were also verified over the CHO (Chinese hamster ovary) human normal cell line. The obtained results advocate the RGO/M.S./Ag nanocomposite to be a potential candidate against liver cancer. However, further studies are required to study in vivo for understanding the molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that the data can be available on request to the authors.

References

  1. O.O. Ogunwobi, T. Harricharran, J. Huaman, A. Galuza, O. Odumuwagun, Y. Tan, G.X. Ma, M.T. Nguyen, Mechanisms of hepatocellular carcinoma progression. World J. Gastroenterol. 25, 2279–2293 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Villanueva, Hepatocellular Carcinoma, N Engl. J. Med. 380, 1450–1462 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. A. Bakrania, G. Zheng, M. Bhat, Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2022, 14, 41

  4. C.-M. Wong, F.H.-C. Tsang, I.O.-L. Ng, Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat. Rev. Gastroenterol. Hepatol. 15, 137 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. R. Dhanasekaran, A. Limaye, R. Cabrera, Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepatic Med. Evid. Res. 4, 19 (2012)

    Google Scholar 

  6. A. Marengo, C. Rosso, E. Bugianesi, Liver cancer: connections with obesity, fatty liver and cirrhosis. Annu. Rev. Med. 67, 103–117 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. (2019) 69: 7–34

  8. J.D. Yang, P. Hainaut, G.J. Gores, A. Amadou, A. Plymoth, L.R. Roberts, A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 16, 589–604 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  9. W.-. Lau, T.W. Leung, B.-. Lai, C.-. Liew, S.K. Ho, S.C. Yu, A.M. Tang, Preoperative systemic chemoimmunotherapy and sequential resection for unresectable hepatocellular carcinoma. Ann. Surg. 233, 236 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Daher, M. Massarwa, A.A. Benson, T. Khoury, Current and future treatment of hepatocellular carcinoma: an updated comprehensive review. J. Clin. Transl Hepatol. 6, 69–78 (2018)

    Article  PubMed  Google Scholar 

  11. H. Barabadi, T.J. Webster, H. Vahidi, H. Sabori, K.D. Kamali et al., Green Nanotechnology-based gold nanomaterials for hepatic Cancer therapeutics: a systematic review. Iran. J Pharm. Res. 19(3), 3–17 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Younas, M. Rizwan, M. Zubair, A. Inam, S. Ali, Biological synthesis, characterization of three metal-based nanoparticles and their anticancer activities against hepatocellular carcinoma HepG2 cells. Ecotoxicol. Environ. Saf. 223, 112575 (2021)

    Article  CAS  PubMed  Google Scholar 

  13. P. Singh, Y.J. Kim, D. Zhang, D.C. Yang, Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. C. Wang, G. Li, B. Karmakar, H.S. AlSalem, A.A. Shati, A.F. El-kott, F.G. Elsaid, Pectin mediated green synthesis of Fe3O4/Pectin nanoparticles under ultrasound condition as an anti-human colorectal carcinoma bionanocomposite. Arab. J. Chem. 15, 103867 (2022)

    Article  CAS  Google Scholar 

  15. , ed. by M. Hamelian, K. Varmira, B. Karmakar, H. Veisi, Catal. Lett., N. Alikhani, M. Hekmati, B. Karmakar, H. Veisi, Inorg Chem. Commun. 2022;139: 109351; (c) M. Shahriari, M.A.H. Sedigh, M. Shahriari, M. Stenzel, M.M. Zangeneh, A. Zangeneh, B. Mahdavi, M. Asadnia, J. Gholami, B. Karmakar, H. Veisi Inorg. Chem. Commun. 2022;137:109523; (d), S. Hemmati, M.M. Heravi, B. Karmakar, H. Veisi Sci. Rep. 2021;11:12362; (e), S. Hemmati, M.M. Heravi, B. Karmakar, H. Veisi. J Mol. Liq. 2020;319:114302; (f), M. Shahriari, M.A. Sedigh, Y. Mahdavian, S. Mahdigholizad, M. Pirhayati, B. Karmakar, H. Veisi Int. J. Biol. Macromol. 2021;172:55–61; (g) Veisi H, Tamoradi T, Karmakar B, Hemmati S.J. Phys. Chem. Solids.2020;138:109256–109262

  16. Y. Cai, B. Karmakar, H.S. AlSalem, A.F. El-kott, M.Z. Bani-Fwaz, S. Negm, A.A.A. Oyouni, O. Al-Amer, G.E. Batiha, Oak gum mediated green synthesis of silver nanoparticles under ultrasonic conditions: characterization and evaluation of its antioxidant and anti-lung cancer effects. Arab. J. Chem. 15, 103848 (2022)

    Article  CAS  Google Scholar 

  17. Y. Cai, B. Karmakar, M.A. Salem, A.Y. Alzahrani, M.Z. Bani-Fwaz, A.A.A. Oyouni, O. Al-Amer, G.E. Batiha, Ag NPs supported chitosan-agarose modified Fe3O4 nanocomposite catalyzed synthesis of indazolo[2,1-b]phthalazines and anticancer studies against liver and lung cancer cells. Int. J. Biol. Macromol. 208, 20–28 (2022)

    Article  CAS  PubMed  Google Scholar 

  18. H. Veisi, T. Tamoradi, B. Karmakar, P. Mohammadi, S. Hemmati, Mater. Sci. Eng. C 104, 109919 (2019)

    Article  CAS  Google Scholar 

  19. X. Ou, B. Karmakar, N.S. Awwad, H.S. Ibrahium, H.H. Osman, A.F. El-kott, M.M. Abdel-Daim, Au nanoparticles adorned chitosan-modified magnetic nanocomposite: an investigation towards its antioxidant and anti-hepatocarcinoma activity in vitro. Inorg. Chem. Commun. 137, 109221 (2022)

    Article  CAS  Google Scholar 

  20. R.K. Sevakesavan, G. Franklin, Prospective application of Nanoparticles Green Synthesized using Medicinal Plant extracts as Novel Nanomedicines. Nanotechnol Sci. Appl. 14, 179–195 (2021)

    Article  Google Scholar 

  21. D. Sharma, S. Kanchi, K. Bisetty, Biogenic synthesis of nanoparticles: a review. Arab. J. Chem. 12, 3576–3600 (2019)

    Article  CAS  Google Scholar 

  22. S. Saif, A. Tahir, Y. Chen, Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 6, 209 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  23. A.M. Fayaz, K. Balaji, M. Girilal, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria.Nanomedicine. 2010;6:103–109

  24. I.A. Adelere, A. Lateef, A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol Rev. 5, 567–587 (2016)

    CAS  Google Scholar 

  25. A. Mishra, M. Sardar, Rapid biosynthesis of silver nanoparticles using sugarcane bagasse—an industrial waste. J. Nanoeng Nanomanufact. 3, 217–219 (2013)

    Article  CAS  Google Scholar 

  26. J.K. Patra, K.-H. Baek, Green nanobiotechnology: factors affecting synthesis and characterization techniques. J. Nanomater. 2014, 219 (2014)

    Article  Google Scholar 

  27. U. Shedbalkar, R. Singh, S. Wadhwani, Microbial synthesis of gold nanoparticles: current status and future prospects. Adv. Colloid Interface Sci. 209, 40–48 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. V. Makarov, A. Love, O. Sinitsyna, Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 6, 35–44 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 19, 1357–1361 (2003)

    Article  CAS  Google Scholar 

  30. M. Wypij, T. Je˛drzejewski, J. Trzcin´ska-Wencel, M. Ostrowski, M. Rai, P. Golin´ska, Green Synthesized Silver Nanoparticles: Antibacterial and Anticancer Activities, Biocompatibility, and analyses of surface-attached proteins. Front. Microbiol. 12, 632505 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  31. A.A. Hamed, H. Kabary, M. Khedr, A.N. Emam, Antibiofilm, antimicrobial and cytotoxic activity of extracellular green-synthesized silver nanoparticles by two marine-derived actinomycete. RCS Adv. 10, 10361–10367 (2020)

    CAS  Google Scholar 

  32. C. He, Y. Guo, B. Karmakar, A. El-kott, A.E. Ahmed, A. Khames, Decorated silver nanoparticles on biodegradable magnetic chitosan/starch composite: investigation of its cytotoxicity, antioxidant and anti-human breast cancer properties. J. Environ. Chem. Eng. 9, 106393 (2021)

    Article  CAS  Google Scholar 

  33. Y.P. Kwan, T. Saito, D. Ibrahim, F.M. Al-Hassan, C. EinOon, Y. Chen, Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharm. Biol. 54, 1223–1236 (2016)

    CAS  PubMed  Google Scholar 

  34. W. Zi, B. Karmakar, A.F. El-kott, F.A. Al-Saeed, S. Negm, E.T. Salem, Green Synthesized Silver Nanoparticles Incorporated Graphene Oxide: investigation of its Catalytic activity, antioxidant and potential activity against Colorectal Cancer cells. J. Inorg. Organometal Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02600-4

    Article  Google Scholar 

  35. S. Gurunathan, M. Qasim, P. Park, H. Yoo, D.Y. Choi, H. Song, Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT 116. Int. J. Mol. Sci. 19, 2269 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  36. N. Li, G. Li, R. Li, B. Karmakar, A.F. El-kott, M.Z. Bani-Fwaz, S. Negm, K. Morsy, Synthesis of au NPs/Quince nanoparticles mediated by Quince extract for the treatment of human cervical cancer: introducing a novel chemotherapeutic supplement. Mater. Exp. 12, 1465–1473 (2022)

    Article  CAS  Google Scholar 

  37. T. Huang, H.S. AlSalem, M.S. Binkadem, S.T. Al-Goul, A.F. El-kott, A.A. Alsayegh, G.J. Majdou, G.E. Batiha, B. Karmakar, Green synthesis of Ag/Fe3O4 nanoparticles using Mentha extract: preparation, characterization and investigation of its anti-human lung cancer application. J. Saudi Chem. Soc. 26, 101505 (2022)

    Article  CAS  Google Scholar 

  38. N.E. Menyiy, H.N. Mrabti, N.E. Omari, A.E. Bakili et al., Medicinal uses, Phytochemistry, Pharmacology, and Toxicology of Mentha spicata. Evidence-based complementary and alternative medicine. Article ID 7990508, 32 (Volume 2022)

  39. R. Pavela, K. Kaffkov´a, M. Kumˇsta, Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus say (Diptera: Culicidae). Plant Prot. Sci. 50(1), 36–42 (2014)

    Article  Google Scholar 

  40. I. Print, A.R. Golparvar, A. Hadipanah, A.M. Mehrabi, Diversity in chemical composition from two ecotypes of (Mentha longifolia L.) and (Mentha spicata L. in Iran climatic conditions). J. Biodivers. Environ. Sci. JBES. 6(4), 26–33 (2015)

    Google Scholar 

  41. K.M. Ganesh, A. Rai, S. Bhaskar, N. Reddy, S.S. Ramamaurthy, Plasmon-enhanced fluorescence from synergistic engineering of graphene oxide and sharp-edged silver nanorods mediated with castor protein for cellphone-based attomolar sensing. J. Lumin. 260, 119835 (2023)

    Article  CAS  Google Scholar 

  42. S. Arora, J. Jain, J.M. Rajwade, K.M. Paknikar, Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol. Lett. 179, 93–100 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. C. Carlson, S.M. Hussain, A.M. Schrand, L.K. Braydich-Stolle, K.L. Hess, R.L. Jones, Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112, 13608–13619 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. A. Rai, S. Bhaskar, P. Battampara, N. Reddy, S.S. Ramamaurthy, Integrated Photo-Plasmonic coupling of bioinspired sharp-edged silver Nano-particles with Nano-films in extended cavity functional interface for cellphone-aided femtomolar sensing. Mater. Lett. 316, 132025 (2022)

    Article  CAS  Google Scholar 

  45. A. Rai, S. Bhaskar, N. Reddy, S.S. Ramamaurthy, Cellphone-aided Attomolar Zinc Ion Detection using silkworm protein-based Nanointerface Engineering in a Plasmon-Coupled Dequenched Emission platform. ACS Sustainable Chem. Eng. 9, 44, 14959–14974 (2021)

    Article  CAS  Google Scholar 

  46. S. Bhaskar, A. Rai, K.M. Ganesh, R. Reddy, N. Reddy, S.S. Ramamaurthy, Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface. Langmuir 2022, 38, 39, 12035–12049

  47. S. Bhaskar, D. Thacharakkal, S.S. Ramamaurthy, C. Subramaniam, Metal–dielectric Interfacial Engineering with Mesoporous Nano-Carbon Florets for 1000-Fold fluorescence Enhancements: smartphone-enabled visual detection of Perindopril Erbumine at a single-molecular level. ACS Sustainable Chem. Eng. 11(1), 78–91 (2023)

    Article  CAS  Google Scholar 

  48. S. Bhaskar, V. Srinivasan, S.S. Ramamaurthy, Nd2O3-Ag nanostructures for Plasmonic Biosensing, Antimicrobial, and Anticancer Applications. ACS Appl. Nano Mater. 6, 2, 1129–1145 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through research group program under grant number (RGP. 2/232/44). Also, the current work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R419), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Haibo Ding, Donghua Dai, Ammena Y. Binsaleh, Attalla F. El-kott, Fatimah A. Al-Saeed: Visualization, Writing original draft, Formal analysis. Ammena Y. Binsaleh, Attalla F. El-kott, Fatimah A. Al-Saeed: Funding acquisition, Methodology, Supervision. Ammena Y. Binsaleh, Attalla F. El-kott, Fatimah A. Al-Saeed: Writing original draft, Formal analysis, Writing-review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Donghua Dai.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest with other people or organizations that could affect this study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Dai, D., Binsaleh, A.Y. et al. Green Immobilized Silver Nanoparticles Over Mentha spicata Flower Extract Modified Reduced Graphene Oxide: Investigation of its Antioxidant and Anti-liver Cancer Effects. J Inorg Organomet Polym 34, 1369–1378 (2024). https://doi.org/10.1007/s10904-023-02843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02843-1

Keywords

Navigation