Skip to main content
Log in

Solar Assisted Removal of Methylene Blue Dye from Wastewater Using Zinc-Metal Organic Framework (Zn-MOF)

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Water pollution has become a major environmental threat owing to the expeditious development of industries. These industries rapidly release wastewater containing harmful dyes (organic pollutants), which significantly affect the lives of humans and aquatic organisms to a huge extent. Therefore, the elimination of the pollutants in the contaminated water has become the primary need of the moment that is to be treated before it discharges into the environment. This article mainly focuses on the adsorption mechanism of the organic dye methylene blue from wastewater under sunlight using a zinc-metal organic framework (Zn-MOF). The Zn-MOF, being a three-dimensional porous structure was synthesized by the direct precipitation method using zinc metal ions and terephthalic acid (or) benzene-1,4-dicarboxylic acid as a connecting linker. Then, morphological and optical characterizations, along with the analysis of thermal and surface parameters, were performed for the synthesized Zn-MOF. The synthesized Zn-MOF appeared to be in a cubic form with a pore volume of about 0.006 cc/g. It was also found to have a surface area of 4.705 m2/g, with an absorbance range of 239.39 nm. The elemental composition of zinc in the synthesized Zn-MOF was approximately 25.41%, proving that the synthesized MOF is a Zinc-based MOF. As the results showed many properties related to the adsorption mechanism, Zn-MOF was chosen to proceed with the adsorptive application of removing the methylene blue dye from wastewater under sunlight. This application provides an efficient solution for the treatment of wastewater through the adsorption property of Zn-MOF, thereby proving its potential as an adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

All the data were included within the article.

References

  1. A. Felix Sahayaraj, H. Joy Prabu, J. Maniraj, M. Kannan, M. Bharathi, P. Diwahar, J. Salamon, Metal-organic frameworks (MOFs): the next generation of materials for catalysis, gas storage, and separation. J. Inorg. Organomet. Polym Mater. 2023(1), 1–25 (2023). https://doi.org/10.1007/S10904-023-02657-1

    Article  Google Scholar 

  2. P.S. Vindhya, V.T. Kavitha, Phyto-synthesis of pure and Mn doped SnO2 nanoparticles: evaluation of antimicrobial, antioxidant and photocatalytic activities. J. Inorg. Organomet. Polym Mater. 1, 1–17 (2023). https://doi.org/10.1007/S10904-023-02733-6/FIGURES/13

    Article  Google Scholar 

  3. K. Maheshwari, M. Agrawal, A.B. Gupta, Dye Pollution in Water and Wastewater (Springer, Singapore, 2021), pp.1–25

    Google Scholar 

  4. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3(2), 275–290 (2019). https://doi.org/10.1016/J.BIORI.2019.09.001

    Article  Google Scholar 

  5. F. Asghar, A. Mushtaq, The future of nanomaterial in wastewater treatment: a review. IJCBS 23(1), 2023 (2023)

    Google Scholar 

  6. E. Oyarce, P. Cantero-López, K. Roa, A. Boulett, O. Yáñez, P. Santander, C.G. del Pizarro, J. Sánchez, Removal of highly concentrated methylene blue dye by cellulose nanofiber biocomposites. Int. J. Biol. Macromol. 238, 124045 (2023). https://doi.org/10.1016/J.IJBIOMAC.2023.124045

    Article  CAS  PubMed  Google Scholar 

  7. A. Anouzla, A.K. Idrissi, O. Hartal, M. Kastali, H. Loukili, K. Digua, S. Souabi, B. Redouane, A. Moussadik, M. Elouardi, K. Azoulay, I. Bencheikh, M. Benchrifa, Y. Abrouki, J. Mabrouki, A.E. Hamidi, M. Dahhou, H. Harhar, G. Fattah, M. Salah, Optimization of performance the waste in treatment of textile wastewater using response surface methodology. Environ. Sci. Eng. (2023). https://doi.org/10.1007/978-3-031-25662-2_12/COVER

    Article  Google Scholar 

  8. P. Kowsalya, S.U. Bharathi, M. Chamundeeswari, Photocatalytic treatment of textile effluents by biosynthesized photo-smart catalyst: an eco-friendly and cost-effective approach. Environ. Dev. Sustain. (2023). https://doi.org/10.1007/S10668-023-03172-6/FIGURES/10

    Article  Google Scholar 

  9. L.A. Castillo-Suárez, A.G. Sierra-Sánchez, I. Linares-Hernández, V. Martínez-Miranda, E.A. Teutli-Sequeira, A critical review of textile industry wastewater: green technologies for the removal of indigo dyes. Int. J. Environ. Sci. Technol. 2023, 1–38 (2023). https://doi.org/10.1007/S13762-023-04810-2

    Article  Google Scholar 

  10. A.P. Periyasamy, Microfiber emissions from functionalized textiles: potential threat for human health and environmental risks. Toxics 11(5), 406 (2023). https://doi.org/10.3390/TOXICS11050406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Singh, N. Rani, S. Kumar, P. Kumar, B. Mohan, V. Bhankar, N. Kataria, R. Kumar, K. Kumar, Assessing the biomass-based carbon dots and their composites for photocatalytic treatment of wastewater. J. Clean. Prod. 413, 137474 (2023). https://doi.org/10.1016/J.JCLEPRO.2023.137474

    Article  CAS  Google Scholar 

  12. Z. Ali, R. Ahmad, Nanotechnology for Water Treatment (Springer, Cham, 2020), pp.143–163

    Google Scholar 

  13. K.K. Singh, A. Singh, S. Rai, A study on nanomaterials for water purification. Mater. Today Proc. 51, 1157–1163 (2022). https://doi.org/10.1016/J.MATPR.2021.07.116

    Article  CAS  Google Scholar 

  14. S.A.E. Abdulqader, S.A.S. Rozaimah, H.H. Abu, A.R.R. Adne, M. Idris, Treatment of methylene blue in wastewater using Scirpus grossus. Malays. J. Anal. Sci. 21(1), 182–187 (2017). https://doi.org/10.17576/mjas-2017-2101-21

    Article  Google Scholar 

  15. S. Prabakaran, M. Rajan, Biosynthesis of nanoparticles and their roles in numerous areas. Compr. Anal. Chem. 94, 1–47 (2021). https://doi.org/10.1016/BS.COAC.2021.02.001

    Article  CAS  Google Scholar 

  16. A. Najafidoust, B. Abdollahi, E.A. Asl, R. Karimi, Synthesis and characterization of novel M@ZnO/UiO-66 (M = Ni, Pt, Pd and mixed Pt&Pd) as an efficient photocatalyst under solar light. J. Mol. Struct. 1256, 132580 (2022). https://doi.org/10.1016/J.MOLSTRUC.2022.132580

    Article  CAS  Google Scholar 

  17. E. Asadian, R. Masoudifar, N. Pouyanfar, F. Ghorbani-Bidkorbeh, Nanotechnology-based therapies for skin wound regeneration, in Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance. (Elsevier, Amsterdam, 2022), pp.485–530

    Chapter  Google Scholar 

  18. A.D. Salunkhe, P.K. Pagare, A.P. Torane, Review on recent modifications in nickel metal-organic framework derived electrode (Ni-MOF) materials for supercapacitors. J. Inorg. Organometall. Polym. Mater. 33(2), 287–318 (2022). https://doi.org/10.1007/S10904-022-02503-W

    Article  Google Scholar 

  19. B. Abdollahi, M. Zarei, D. Salari, Synthesis, characterization and application of diethylenetriamine functionalized MIL-53(Fe) metal-organic framework for efficient As(V) removal from surface and groundwater. J. Solid State Chem. 311, 123132 (2022). https://doi.org/10.1016/J.JSSC.2022.123132

    Article  CAS  Google Scholar 

  20. G. He, Y. Liao, Modification of micro/nanoscaled manganese dioxide-based materials and their electrocatalytic applications toward oxygen evolution reaction. J. Mater. Chem. A 11(13), 6688–6746 (2023). https://doi.org/10.1039/D2TA09165H

    Article  CAS  Google Scholar 

  21. M. Beydaghdari, F.H. Saboor, A. Babapoor, M. Asgari, Recent progress in adsorptive removal of water pollutants by metal-organic frameworks. ChemNanoMat 8(2), e202100400 (2022). https://doi.org/10.1002/CNMA.202100400

    Article  CAS  Google Scholar 

  22. B. Abdollahi, D. Salari, M. Zarei, Synthesis and characterization of magnetic Fe3O4@SiO2-MIL-53(Fe) metal-organic framework and its application for efficient removal of arsenate from surface and groundwater. J. Environ. Chem. Eng. 10(2), 107144 (2022). https://doi.org/10.1016/J.JECE.2022.107144

    Article  CAS  Google Scholar 

  23. B. Abdollahi, A. Najafidoust, E. AbbasiAsl, M. Sillanpaa, Fabrication of ZiF-8 metal organic framework (MOFs)-based CuO-ZnO photocatalyst with enhanced solar-light-driven property for degradation of organic dyes. Arab. J. Chem. 14(12), 103444 (2021). https://doi.org/10.1016/J.ARABJC.2021.103444

    Article  CAS  Google Scholar 

  24. A. Khataee, S. Arefi-Oskoui, B. Abdollahi, Y. Hanifehpour, S.W. Joo, Synthesis and characterization of Pr x Zn1-x Se nanoparticles for photocatalysis of four textile dyes with different molecular structures. Res. Chem. Intermed. 41(11), 8425–8439 (2015). https://doi.org/10.1007/S11164-014-1901-5/FIGURES/10

    Article  CAS  Google Scholar 

  25. V.K.M. Au, Recent advances in the use of metal-organic frameworks for dye adsorption. Front. Chem. 8, 567111 (2020). https://doi.org/10.3389/FCHEM.2020.00708/BIBTEX

    Article  Google Scholar 

  26. C. Arora, S. Soni, S. Sahu, J. Mittal, P. Kumar, P.K. Bajpai, Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. J. Mol. Liq. 284, 343–352 (2019). https://doi.org/10.1016/J.MOLLIQ.2019.04.012

    Article  CAS  Google Scholar 

  27. Y. Huang, J. Zhu, H. Liu, Z. Wang, X. Zhang, Preparation of porous graphene/carbon nanotube composite and adsorption mechanism of methylene blue. SN Appl. Sci. 1(1), 1–11 (2019). https://doi.org/10.1007/S42452-018-0035-6/FIGURES/10

    Article  Google Scholar 

  28. I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L.A. Shah, T. Shah, I. Khan, Review on methylene blue: its properties, uses, toxicity and photodegradation. Water 14(2), 242 (2022). https://doi.org/10.3390/W14020242

    Article  CAS  Google Scholar 

  29. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Green synthesis of DyBa2Fe3O7.988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrog. Energy 47(31), 14319–14330 (2022). https://doi.org/10.1016/J.IJHYDENE.2022.02.175

    Article  CAS  Google Scholar 

  30. M.A. Hossain, M.M.H. Mondol, S.H. Jhung, Functionalized metal-organic framework-derived carbon: effective adsorbent to eliminate methylene blue, a small cationic dye from water. Chemosphere 303, 134890 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2022.134890

    Article  CAS  PubMed  Google Scholar 

  31. T.C. Jen, Waste PET-MOF-Cleanwater: Waste PET-Derived Metal-Organic Framework (MOFs) as Cost-Effective Adsorbents for Removal of Hazardous Elements from Polluted Water (UJ Press, Johannesburg, 2022)

    Google Scholar 

  32. S. Naghdi, M.M. Shahrestani, M. Zendehbad, H. Djahaniani, H. Kazemian, D. Eder, Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). J. Hazard. Mater. 442, 130127 (2023). https://doi.org/10.1016/J.JHAZMAT.2022.130127

    Article  CAS  PubMed  Google Scholar 

  33. H.M. Zwain, M. Vakili, I. Dahlan, Waste material adsorbents for zinc removal from wastewater: a comprehensive review. Int. J. Chem. Eng. (2014). https://doi.org/10.1155/2014/347912

    Article  Google Scholar 

  34. W.H. Li, Q.Y. Yue, B.Y. Gao, X.J. Wang, Y.F. Qi, Y.Q. Zhao, Y.J. Li, Preparation of sludge-based activated carbon made from paper mill sewage sludge by steam activation for dye wastewater treatment. Desalination 278(1–3), 179–185 (2011). https://doi.org/10.1016/J.DESAL.2011.05.020

    Article  CAS  Google Scholar 

  35. D.P. Sui, H.X. Chen, D.W. Li, Sol–gel-derived thiocyanato-functionalized silica gel sorbents for adsorption of Fe(III) ions from aqueous solution: kinetics, isotherms and thermodynamics. J. Sol-Gel. Sci. Technol. 80(2), 504–513 (2016). https://doi.org/10.1007/S10971-016-4092-2/TABLES/6

    Article  CAS  Google Scholar 

  36. S.Z.N. Ahmad, W.N.W. Salleh, N.H. Ismail, N.A.M. Razali, R. Hamdan, A.F. Ismail, Effects of operating parameters on cadmium removal for wastewater treatment using zeolitic imidazolate framework-L/graphene oxide composite. J. Environ. Chem. Eng. 9(5), 106139 (2021). https://doi.org/10.1016/J.JECE.2021.106139

    Article  CAS  Google Scholar 

  37. S. Sivalingam, S. Sen, Rapid ultrasound assisted hydrothermal synthesis of highly pure nanozeolite X from fly ash for efficient treatment of industrial effluent. Chemosphere 210, 816–823 (2018). https://doi.org/10.1016/J.CHEMOSPHERE.2018.07.091

    Article  CAS  PubMed  Google Scholar 

  38. E. Thaninayagam, R.R. Gopi, H.J. Prabu, A. Arunviveke, I. Johnson, A.J. Anthuvan, S.J. Sundaram, K. Kaviyarasu, Bioreduction of gold nanocolloids using Quercus infectoria (Oliv): UV-assisted cationic-anionic dye degradation. Biomass Conv. Bioref. 13(4), 3463–3474 (2023). https://doi.org/10.1007/S13399-023-03777-X

    Article  CAS  Google Scholar 

  39. A.O. Ibrahim, K.A. Adegoke, R.O. Adegoke, Y.A. AbdulWahab, V.B. Oyelami, M.O. Adesina, Adsorptive removal of different pollutants using metal-organic framework adsorbents. J. Mol. Liq. 333, 115593 (2021). https://doi.org/10.1016/J.MOLLIQ.2021.115593

    Article  CAS  Google Scholar 

  40. M.J. Uddin, R.E. Ampiaw, W. Lee, Adsorptive removal of dyes from wastewater using a metal-organic framework: a review. Chemosphere 284, 131314 (2021). https://doi.org/10.1016/J.CHEMOSPHERE.2021.131314

    Article  CAS  PubMed  Google Scholar 

  41. M.H. Yap, K.L. Fow, G.Z. Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2(3), 218–245 (2017). https://doi.org/10.1016/J.GEE.2017.05.003

    Article  Google Scholar 

  42. S.A. Jasim, H.I.M. Amin, A. Rajabizadeh, M.A.L. Nobre, F. Borhani, A.T. Jalil, M.M. Saleh, M.M. Kadhim, M. Khatami, Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants. Water Sci. Technol. 86(9), 2303–2335 (2022). https://doi.org/10.2166/WST.2022.318/1119071/WST2022318.PDF

    Article  CAS  PubMed  Google Scholar 

  43. S. Shin, H. Yoon, Y. Yoon, S. Park, M.W. Shin, Porosity tailoring of the Zn-MOF-5 derived carbon materials and its effects on the performance as a cathode for lithium-air batteries. Microporous Mesoporous Mater. 311, 110726 (2021). https://doi.org/10.1016/J.MICROMESO.2020.110726

    Article  CAS  Google Scholar 

  44. F. Yang, M. Du, K. Yin, Z. Qiu, J. Zhao, C. Liu, G. Zhang, Y. Gao, H. Pang, Applications of metal-organic frameworks in water treatment: a review. Small 18(11), 2105715 (2022). https://doi.org/10.1002/SMLL.202105715

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore and St. Joseph’s College, Trichy for providing the facility support to complete this research work.

Funding

The authors have not claimed any funding for this study. All data are interpreted in this paper and have not been discussed in any of the existing journals.

Author information

Authors and Affiliations

Authors

Contributions

VS—conceptualization, HJP—drafting, AFS—writing, IJ—visualization, ET—software, RRG—software, JS—visualization, AS—supervision.

Corresponding author

Correspondence to H. Joy Prabu.

Ethics declarations

Competing interests

The authors do not have any conflicts of interest regarding the publication of this paper in this journal.

Ethical Approval

Ethics approval was not applicable for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snowlin, V., Prabu, H.J., Sahayaraj, A.F. et al. Solar Assisted Removal of Methylene Blue Dye from Wastewater Using Zinc-Metal Organic Framework (Zn-MOF). J Inorg Organomet Polym 34, 251–265 (2024). https://doi.org/10.1007/s10904-023-02823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02823-5

Keywords

Navigation