Skip to main content
Log in

Magnetic Metal–Organic Framework (Fe3O4@MIL-101) Functionalized with Dendrimer: Highly Efficient and Selective Adsorption Removal of Organic Dyes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Herein, a magnetic chromium-based metal–organic framework (MOF) was successfully synthesized and applied for adsorption and removal of methylene blue MB and methyl orange MO from an aqueous solution. To achieve high adsorption capacity and selective removal of organic dyes, rational surface functionalization of synthesized MOF with poly (propylene imine) PPI dendrimer was carried out. The Fe3O4@MIL-101@PPI composite exhibits a crystalline structure with high thermal stability and magnetic properties. In addition, this framework shows a high specific surface area (116 m2/g) and porosity which is beneficial for wastewater treatment. The results indicate that Fe3O4@MIL-101@PPI composite can remove cationic dye from an aqueous solution more selectively and efficiently than anionic dye. The adsorption experiments revealed high adsorption capacity (93.9 mg/g) and fast adsorption kinetics following the pseudo-second-order kinetic model. Interestingly, the regeneration study showed that the Fe3O4@MIL-101@PPI composite had appropriate reusability for dye removal with an almost unchanged structure after five regeneration cycles. This research provides new insights for the rational design of hybrid magnetic adsorbents with synergistic functionality and porous structure by combining the advantages of magnetic nanoparticles, MOFs, and dendrimers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Li, J.L. Gong, G.M. Zeng, P. Zhang, B. Song, W.C. Cao, H.Y. Liu, S.Y. Huan, Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges. J. Colloid Interface Sci. 527, 267–279 (2018). https://doi.org/10.1016/j.jcis.2018.05.028

    Article  CAS  PubMed  Google Scholar 

  2. J. Fan, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100 (Fe) core–shell bio-nanocomposites. Chemosphere 191, 315–323 (2018). https://doi.org/10.1016/j.chemosphere.2017.10.042

    Article  CAS  PubMed  Google Scholar 

  3. M. Pu, Z. Guan, Y. Ma, J. Wan, Y. Wang, M.L. Brusseau, H. Chi, Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of orange G in aqueous solution. Appl. Catal. A 549, 82–92 (2018). https://doi.org/10.1016/j.apcata.2017.09.021

    Article  CAS  Google Scholar 

  4. M. Tuzen, A. Sarı, T.A. Saleh, Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. J. Environ. Manage. 206, 170–177 (2018). https://doi.org/10.1016/j.jenvman.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  5. J. Abdi, M. Vossoughi, N.M. Mahmoodi, I. Alemzadeh, Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 326, 1145–1158 (2017). https://doi.org/10.1016/j.cej.2017.06.054

    Article  CAS  Google Scholar 

  6. M. Moghaddari, F. Yousefi, M. Ghaedi, K. Dashtian, A simple approach for the sonochemical loading of Au, Ag and Pd nanoparticle on functionalized MWCNT and subsequent dispersion studies for removal of organic dyes: artificial neural network and response surface methodology studies. Ultrason. Sonochem. 42, 422–433 (2018). https://doi.org/10.1016/j.ultsonch.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  7. H. Molavi, A. Shojaei, A. Pourghaderi, Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond. J. Colloid Interface Sci. 524, 52–64 (2018). https://doi.org/10.1016/j.jcis.2018.03.088

    Article  CAS  PubMed  Google Scholar 

  8. H.M. Abd El Salam, T. Zaki, Removal of hazardous cationic organic dyes from water using nickel-based metal-organic frameworks. Inorganica. Chim. Acta. 471, 203–210 (2018). https://doi.org/10.1016/j.ica.2017.10.040

    Article  CAS  Google Scholar 

  9. M. Kousha, E. Daneshvar, A.R. Esmaeli, M. Jokar, A.R. Khataee, Optimization of acid blue 25 removal from aqueous solutions by raw, esterified and protonated Jania adhaerens biomass. Int. Biodeterior. Biodegrad. 69, 97–105 (2012). https://doi.org/10.1016/j.ibiod.2012.01.007

    Article  CAS  Google Scholar 

  10. J. Qiu, Y. Feng, X. Zhang, M. Jia, J. Yao, Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: adsorption performance and mechanisms. J. Colloid Interface Sci. 499, 151–158 (2017). https://doi.org/10.1016/j.jcis.2017.03.101

    Article  CAS  PubMed  Google Scholar 

  11. M. Hasanzadeh, A. Simchi, H.S. Far, Kinetics and adsorptive study of organic dye removal using water-stable nanoscale metal organic frameworks. Mater. Chem. Phys. 233, 267–275 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.050

    Article  CAS  Google Scholar 

  12. K. Wang, C. Li, Y. Liang, T. Han, H. Huang, Q. Yang, D. Liu, C. Zhong, Rational construction of defects in a metal-organic framework for highly efficient adsorption and separation of dyes. Chem. Eng. J. 289, 486–493 (2016). https://doi.org/10.1016/j.cej.2016.01.019

    Article  CAS  Google Scholar 

  13. H. Zhang, J. Nai, L. Yu, X.W.D. Lou, Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1, 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008

    Article  CAS  Google Scholar 

  14. R.M. Abdelhameed, M. Rehan, H.E. Emam, Figuration of Zr-based MOF@cotton fabric composite for potential kidney application. Carbohydr. Polym. 195, 460–467 (2018). https://doi.org/10.1016/j.carbpol.2018.04.122

    Article  CAS  PubMed  Google Scholar 

  15. K. Sun, L. Li, X.L. Yu, L. Liu, Q. Meng, F. Wang, R. Zhang, Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs. J. Colloid Interface Sci. 486, 128–135 (2017). https://doi.org/10.1016/j.jcis.2016.09.068

    Article  CAS  PubMed  Google Scholar 

  16. J. Zhou, Y. Liang, X. He, L. Chen, Y. Zhang, Dual-functionalized magnetic metal-organic framework for highly specific enrichment of phosphopeptides. ACS Sustain. Chem. Eng. 5, 11413–11421 (2017). https://doi.org/10.1021/acssuschemeng.7b02521

    Article  CAS  Google Scholar 

  17. S. Chang, C. Liu, Y. Sun, Z. Yan, X. Zhang, X. Hu, H. Zhang, Fe3O4 nanoparticles coated with Ag-nanoparticle-embedded metal-organic framework MIL-100(Fe) for the catalytic reduction of 4-nitrophenol. ACS Appl. Nano Mater. 3, 2302–2309 (2020). https://doi.org/10.1021/acsanm.9b02415

    Article  CAS  Google Scholar 

  18. A.F. Abdel-Magied, H.N. Abdelhamid, R.M. Ashour, L. Fu, M. Dowaidar, W. Xia, K. Forsberg, Magnetic metal-organic frameworks for efficient removal of cadmium(II), and lead(II) from aqueous solution. J. Environ. Chem. Eng. 10, 107467 (2022). https://doi.org/10.1016/j.jece.2022.107467

    Article  CAS  Google Scholar 

  19. A. Hamedi, M.B. Zarandi, M.R. Nateghi, Highly efficient removal of dye pollutants by MIL-101(Fe) metal-organic framework loaded magnetic particles mediated by poly L-dopa. J. Environ. Chem. Eng. (2019). https://doi.org/10.1016/j.jece.2019.102882

    Article  Google Scholar 

  20. X. Zhang, J. Wang, X.X. Dong, Y.K. Lv, Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere (2020). https://doi.org/10.1016/j.chemosphere.2019.125144

    Article  PubMed  PubMed Central  Google Scholar 

  21. M. Hasanzadeh, A. Simchi, H. Shahriyari Far, Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: synthesis, adsorption mechanism and kinetics studies. J. Ind. Eng. Chem. 81, 405–414 (2020). https://doi.org/10.1016/j.jiec.2019.09.031

    Article  CAS  Google Scholar 

  22. H. Shahriyari Far, M. Hasanzadeh, M. Najafi, T.R. Masale Nezhad, M. Rabbani, Efficient removal of Pb(II) and Co(II) ions from aqueous solution with a chromium-based metal-organic framework/activated carbon composites. Ind. Eng. Chem. Res. 60, 4332–4341 (2021). https://doi.org/10.1021/acs.iecr.0c06199

    Article  CAS  Google Scholar 

  23. D. Giliopoulos, A. Zamboulis, D. Giannakoudakis, D. Bikiaris, K. Triantafyllidis, Polymer/metal organic framework (MOF) nanocomposites for biomedical applications. Molecules 25, 1–28 (2020). https://doi.org/10.3390/molecules25010185

    Article  CAS  Google Scholar 

  24. C. Yang, Z.I. Lin, J.A. Chen, Z. Xu, J. Gu, W.C. Law, J.H.C. Yang, C.K. Chen, Organic/Inorganic self-assembled hybrid nano-architectures for cancer therapy applications. Macromol. Biosci. (2022). https://doi.org/10.1002/mabi.202100349

    Article  PubMed  Google Scholar 

  25. J. Yang, Y.W. Yang, Metal-organic frameworks for biomedical applications. Small 16, 1–24 (2020). https://doi.org/10.1002/smll.201906846

    Article  CAS  Google Scholar 

  26. B.N. Khiarak, M. Hasanzadeh, M. Mojaddami, H. Shahriyar Far, A. Simchi, In situ synthesis of quasi-needle-like bimetallic organic frameworks on highly porous graphene scaffolds for efficient electrocatalytic water oxidation. Chem. Commun. 56, 3135–3138 (2020). https://doi.org/10.1039/c9cc09908e

    Article  CAS  Google Scholar 

  27. B.N. Khiarak, M. Hasanzadeh, A. Simchi, Electrocatalytic hydrogen evolution reaction on graphene supported transition metal-organic frameworks. Inorg. Chem. Commun. 127, 108525 (2021). https://doi.org/10.1016/j.inoche.2021.108525

    Article  CAS  Google Scholar 

  28. L. Liu, Z.-P. Tao, H.-R. Chi, B. Wang, S.-M. Wang, Z.-B. Han, The applications and prospects of hydrophobic metal–organic frameworks in catalysis. Dalt. Trans. 50, 39–58 (2021). https://doi.org/10.1039/D0DT03635H

    Article  Google Scholar 

  29. H. Nasser Abdelhamid, A.P. Mathew, Cellulose-zeolitic imidazolate frameworks (CelloZIFs) for multifunctional environmental remediation: adsorption and catalytic degradation. Chem. Eng. J. 426, 131733 (2021). https://doi.org/10.1016/j.cej.2021.131733

    Article  CAS  Google Scholar 

  30. B. Hayati, M. Arami, A. Maleki, E. Pajootan, Thermodynamic properties of dye removal from colored textile wastewater by poly(propylene imine) dendrimer. Desalin. Water Treat. 56, 97–106 (2015). https://doi.org/10.1080/19443994.2014.931529

    Article  CAS  Google Scholar 

  31. J. Yang, Z. Zhang, W. Pang, H. Chen, G. Yan, Polyamidoamine dendrimers functionalized magnetic carbon nanotubes as an efficient adsorbent for the separation of flavonoids from plant extraction. Sep. Purif. Technol. 227, 115710 (2019). https://doi.org/10.1016/j.seppur.2019.115710

    Article  CAS  Google Scholar 

  32. K. Leus, T. Bogaerts, J. De Decker, H. Depauw, K. Hendrickx, H. Vrielinck, V. Van Speybroeck, P. Van Der Voort, Systematic study of the chemical and hydrothermal stability of selected “stable” metal organic frameworks. Microporous Mesoporous Mater. 226, 110–116 (2016). https://doi.org/10.1016/j.micromeso.2015.11.055

    Article  CAS  Google Scholar 

  33. S. Karmakar, D. Roy, C. Janiak, S. De, Insights into multi-component adsorption of reactive dyes on MIL-101-Cr metal organic framework: experimental and modeling approach. Sep. Purif. Technol. 215, 259–275 (2019). https://doi.org/10.1016/j.seppur.2019.01.013

    Article  CAS  Google Scholar 

  34. L. Huang, M. He, B. Chen, B. Hu, A designable magnetic MOF composite and facile coordination-based post-synthetic strategy for the enhanced removal of Hg2+ from water. J. Mater. Chem. A 3, 11587–11595 (2015). https://doi.org/10.1039/c5ta01484k

    Article  CAS  Google Scholar 

  35. M. Iqbal, N. Iqbal, I.A. Bhatti, N. Ahmad, M. Zahid, Response surface methodology application in optimization of cadmium adsorption by shoe waste: a good option of waste mitigation by waste. Ecol. Eng. 88, 265–275 (2016). https://doi.org/10.1016/j.ecoleng.2015.12.041

    Article  Google Scholar 

  36. M. Raeiszadeh, A. Hakimian, A. Shojaei, H. Molavi, Nanodiamond-filled chitosan as an efficient adsorbent for anionic dye removal from aqueous solutions. J. Environ. Chem. Eng. 6, 3283–3294 (2018). https://doi.org/10.1016/j.jece.2018.05.005

    Article  CAS  Google Scholar 

  37. ŞS. Bayazit, M. Yildiz, Y.S. Aşçi, M. Şahin, M. Bener, S. Eğlence, M. Abdel Salam, Rapid adsorptive removal of naphthalene from water using graphene nanoplatelet/MIL-101 (Cr) nanocomposite (Elsevier, Amsterdam, 2017)

    Book  Google Scholar 

  38. M. Heydari Moghaddam, R. Nabizadeh, M.H. Dehghani, B. Akbarpour, A. Azari, M. Yousefi, Performance investigation of zeolitic imidazolate framework—8 (ZIF-8) in the removal of trichloroethylene from aqueous solutions. Microchem. J. 150, 104185 (2019). https://doi.org/10.1016/j.microc.2019.104185

    Article  CAS  Google Scholar 

  39. M. Baziar, H.R. Zakeri, S. Ghalehaskar, Z.D. Nejad, M. Shams, I. Anastopoulos, D.A. Giannakoudakis, E.C. Lima, Metal-organic and Zeolitic imidazole frameworks as cationic dye adsorbents: physicochemical optimizations by parametric modeling and kinetic studies. J. Mol. Liq. 332, 115832 (2021). https://doi.org/10.1016/j.molliq.2021.115832

    Article  CAS  Google Scholar 

  40. C. Saucier, P. Karthickeyan, V. Ranjithkumar, E.C. Lima, G.S. dos Reis, I.A.S. de Brum, Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ. Sci. Pollut. Res. 24, 5918–5932 (2017). https://doi.org/10.1007/s11356-016-8304-7

    Article  CAS  Google Scholar 

  41. J. Lin, L. Wang, Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front. Environ. Sci. Eng. China 3, 320–324 (2009). https://doi.org/10.1007/s11783-009-0030-7

    Article  CAS  Google Scholar 

  42. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 273, 425–434 (2019). https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  43. Y. Liu, Y.J. Liu, Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 61, 229–242 (2008). https://doi.org/10.1016/j.seppur.2007.10.002

    Article  CAS  Google Scholar 

  44. W. Zhang, L. Hu, S. Hu, Y. Liu, Optimized synthesis of novel hydrogel for the adsorption of copper and cobalt ions in wastewater. RSC Adv. 9, 16058–16068 (2019). https://doi.org/10.1039/c9ra00227h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. R.F. Gunst, R.H. Myers, D.C. Montgomery, Response surface methodology: process and product optimization using designed experiments (Wiley, Hoboken, 1996)

    Google Scholar 

  46. J. Sarkar, S. Bhattacharyya, Application of graphene and graphene-based materials in clean energy-related devices minghui. Arch. Thermodyn. 33, 23–40 (2012)

    Article  CAS  Google Scholar 

  47. L. Latifi, S. Sohrabnezhad, Drug delivery by micro and meso metal-organic frameworks. Polyhedron (2020). https://doi.org/10.1016/j.poly.2019.114321

    Article  Google Scholar 

  48. N. Kurnaz Yetim, E. Hasanoğlu Özkan, Synthesis of Au-doped magnetic nanocomposites: structural, magnetic, and catalytic properties. J. Mater. Sci. 32, 24766–24774 (2021). https://doi.org/10.1007/s10854-021-06922-2

    Article  CAS  Google Scholar 

  49. S. Kayal, A. Chakraborty, Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture. Chem. Eng. J. 334, 780–788 (2018). https://doi.org/10.1016/j.cej.2017.10.080

    Article  CAS  Google Scholar 

  50. Z.J. Sun, Z.W. Jiang, Y.F. Li, Poly(dopamine) assisted in situ fabrication of silver nanoparticles/metal-organic framework hybrids as SERS substrates for folic acid detection. RSC Adv. 6, 79805–79810 (2016). https://doi.org/10.1039/c6ra16042e

    Article  CAS  Google Scholar 

  51. H.S. Far, M. Hasanzadeh, M.S. Nashtaei, M. Rabbani, A. Haji, B. Hadavi Moghadam, PPI-dendrimer-functionalized magnetic metal-organic framework (Fe3O4@MOF@PPI) with high adsorption capacity for sustainable wastewater treatment. ACS Appl. Mater. Interfaces. 12, 25294–25303 (2020). https://doi.org/10.1021/acsami.0c04953

    Article  CAS  PubMed  Google Scholar 

  52. K.Y.A. Lin, S.Y. Chen, A.P. Jochems, Zirconium-based metal organic frameworks: highly selective adsorbents for removal of phosphate from water and urine. Mater. Chem. Phys. 160, 168–176 (2015). https://doi.org/10.1016/j.matchemphys.2015.04.021

    Article  CAS  Google Scholar 

  53. K.-Y.A. Lin, H. Yang, F.-K. Hsu, Zr-metal organic framework and derivatives for adsorptive and photocatalytic removal of acid dyes. Water Environ. Res. 90, 144–154 (2018). https://doi.org/10.2175/106143017x15054988926604

    Article  CAS  PubMed  Google Scholar 

  54. S.A.A. Razavi, M.Y. Masoomi, A. Morsali, Host-guest interaction optimization through cavity functionalization for ultra-fast and efficient water purification by a metal-organic framework. Inorg. Chem. 57, 11578–11587 (2018). https://doi.org/10.1021/acs.inorgchem.8b01611

    Article  CAS  PubMed  Google Scholar 

  55. H. Molavi, A. Hakimian, A. Shojaei, M. Raeiszadeh, Selective dye adsorption by highly water stable metal-organic framework: long term stability analysis in aqueous media. Appl. Surf. Sci. 445, 424–436 (2018). https://doi.org/10.1016/j.apsusc.2018.03.189

    Article  CAS  Google Scholar 

  56. M.N. Rashed, A.R. Mohamed, M.A. Awadallah, Chemically activated phosphate slime as adsorbent for heavy metals removal from polluted water. Int. J. Environ. Waste Manag. 16, 145–165 (2015). https://doi.org/10.1504/IJEWM.2015.071289

    Article  CAS  Google Scholar 

  57. F.A. Elaiwi, A. Sirkecioglu, Amine-functionalized metal organic frameworks MIL-101(Cr) adsorbent for copper and cadmium ions in single and binary solution. Sep. Sci. Technol. 55, 3362–3374 (2020). https://doi.org/10.1080/01496395.2019.1706571

    Article  CAS  Google Scholar 

  58. Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, F. Wei, Selective adsorption of cationic dyes by UiO-66-NH 2. Appl. Surf. Sci. 327, 77–85 (2015). https://doi.org/10.1016/j.apsusc.2014.11.103

    Article  CAS  Google Scholar 

  59. N.M. Mahmoodi, B. Hayati, M. Arami, C. Lan, Adsorption of textile dyes on pine cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination 268, 117–125 (2011). https://doi.org/10.1016/j.desal.2010.10.007

    Article  CAS  Google Scholar 

Download references

Funding

MH thanks for financial support from Iran National Elites Foundation (INEF, Grant No. 15-89661).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hasanzadeh.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Far, H.S., Hasanzadeh, M., Najafi, M. et al. Magnetic Metal–Organic Framework (Fe3O4@MIL-101) Functionalized with Dendrimer: Highly Efficient and Selective Adsorption Removal of Organic Dyes. J Inorg Organomet Polym 32, 3848–3863 (2022). https://doi.org/10.1007/s10904-022-02398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02398-7

Keywords

Navigation