Skip to main content
Log in

Effects of Positive Carbon Quantum Dots on Gram-Negative Bacteria as an Antimicrobial Agent

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Non-radiative decay is the main limitation to applications of the excellent optical properties of carbon quantum dots. Moreover, the optical properties of CQDs depend on their size and the passivating agent. Therefore, several functionalisation strategies have been developed to enhance the optical properties of CQDs. Size-controlled synthesis of CQDs within cetyltrimethylammonium bromide (CTAB-CQDs) of 25 nm was achieved in this research for the stabilisation of the excellent optical and antibacterial properties with an inhibition zone of 18 mm with low toxicity at effective concentrations of 10 µg·mL−1 and exhibited cell viability at 76%. CTAB functioned as a surface-passivating agent reacted with CQDs by positive charges from amino groups (–NH2) and interacted with bacterial cells through electrostatic interactions. As a result, CTAB encapsulated CQDs by the amide linkages and formed micelles to enhance the optical and antibacterial properties of CQDs. Meanwhile these CQDs were linked to CTAB by electrostatic interaction reactions and the surface state was modified, thus changing their absorption spectrum. Subsequently, a toxicity test confirmed the CQDs and CTAB-CQDs have good biocompatibility at their effective concentration of 10 µg·mL−1 against Vero cells. The antimicrobial result has confirmed that CQDs are a promising antimicrobial agent against gram-negative bacteria such as Escherichia coli (E. coli) which are more resistant than Gram-positive bacteria. Therefore, modification of CQDs with CTAB affects their antibacterial activities and cytotoxicity which could lead to the development of new, efficient tools for simultaneous biofilm imaging and bactericides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. K. Dimos, Curr. Org. Chem. 20, 682 (2016)

    Article  CAS  Google Scholar 

  2. W. Ren, S. Chen, S. Li, Y. Zhang, J. Liu, M. Guan, H. Yang, N. Li, C. Han, T. Li, Z. Zhao, J. Ge, Chem. A Eur. J. 24, 15806 (2018)

    Article  CAS  Google Scholar 

  3. P. Zhao, L. Zhu, Chem. Commun. 54, 5401 (2018)

    Article  CAS  Google Scholar 

  4. H. Heinz, C. Pramanik, O. Heinz, Y. Ding, R.K. Mishra, D. Marchon, R.J. Flatt, I. Estrela-Lopis, J. Llop, S. Moya, R.F. Ziolo, Surf. Sci. Rep. 72, 1 (2017)

    Article  CAS  Google Scholar 

  5. R. Sisika, A. Sonthanasamy, N. Muslihuddin, N. Sulaiman, L. Ling, A. Mat, Spectrochim Acta Part A Mol. Biomol. Spectrosc. 218, 85 (2019)

    Article  CAS  Google Scholar 

  6. L. Wu, M. Luderer, X. Yang, C. Swain, H. Zhang, K. Nelson, A.J. Stacy, B. Shen, G.M. Lanza, D. Pan, Theranostics 3, 677 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Y. Park, J. Yoo, B. Lim, W. Kwon, S.W. Rhee, J. Mater. Chem. A 4, 11582 (2016)

    Article  CAS  Google Scholar 

  8. K. Omri, J. Mater. Sci. Mater. Electron. (2021).

  9. K. O. N. Alonizan, J. Inorg. Organomet. Polym. Mater. 0, 0 (2018).

  10. S.S.T. Selvi, J.M. Linet, S. Sagadevan, J. Exp. Nanosci. 13, 130 (2018)

    Article  CAS  Google Scholar 

  11. S. Shen, L. Zhao, L. Guo, Int. J. Hydrogen Energy 33, 4501 (2008)

    Article  CAS  Google Scholar 

  12. X.X. Yang, W.B. Wu, Y.F. Li, Z.L. Wu, Q.L. Zeng, C.Z. Huang, M.X. Gao, C.F. Liu, Chem. Commun. 49, 8015 (2013)

    Article  CAS  Google Scholar 

  13. C. Zhao, L. Wu, X. Wang, S. Weng, Z. Ruan, Q. Liu, L. Lin, X. Lin, Carbon N. Y. 163, 70 (2020)

    Article  CAS  Google Scholar 

  14. J. Yang, G. Gao, X. Zhang, Y.H. Ma, X. Chen, F.G. Wu, Carbon N. Y. 146, 827 (2019)

    Article  CAS  Google Scholar 

  15. W. Bing, H. Sun, Z. Yan, J. Ren, X. Qu, Small 12, 4713 (2016)

    Article  PubMed  CAS  Google Scholar 

  16. B. Jubeh, Z. Breijyeh, R. Karaman, Molecules 25, 1340 (2020)

    Article  PubMed Central  CAS  Google Scholar 

  17. A. Mai-Prochnow, M. Clauson, J. Hong, A.B. Murphy, Sci. Rep. 6, 1 (2016)

    Article  CAS  Google Scholar 

  18. D.I. Abu Rabe, M.M. Al Awak, F. Yang, P.A. Okonjo, X. Dong, L.R. Teisl, P. Wang, Y. Tang, N. Pan, Y.P. Sun, L. Yang, Int. J. Nanomed 14, 2655 (2019)

    Article  CAS  Google Scholar 

  19. M. Kováčová, E. Špitalská, Z. Markovic, Z. Špitálský, Part. Part. Syst. Charact. 37, 1 (2020)

    Article  CAS  Google Scholar 

  20. F. Jiang, D. Chen, R. Li, Y. Wang, G. Zhang, S. Li, J. Zheng, N. Huang, Y. Gu, C. Wang, C. Shu, Nanoscale 5, 1137 (2013)

    Article  PubMed  CAS  Google Scholar 

  21. N.A. Travlou, D.A. Giannakoudakis, M. Algarra, A.M. Labella, E. Rodríguez-Castellón, T.J. Bandosz, Carbon N. Y. 135, 104 (2018)

    Article  CAS  Google Scholar 

  22. F. Lin, Y.-W. Bao, F.-G. Wu, J. Carbon Res. 5, 33 (2019)

    Article  CAS  Google Scholar 

  23. H. Jian, R. Wu, T. Lin, Y. Li, H. Lin, S.G. Harroun, J. Lai, C. Huang, ACS Nano 11, 6703 (2017)

    Article  PubMed  CAS  Google Scholar 

  24. L. Cao, S. Sahu, P. Anilkumar, C.E. Bunker, J. Xu, K.A.S. Fernando, P. Wang, E.A. Guliants, K.N. Tackett, Y. Sun, J. Am. Chem. Soc. 133, 4754 (2011)

    Article  PubMed  CAS  Google Scholar 

  25. M.J. Meziani, X. Dong, L. Zhu, L.P. Jones, G.E. Lecroy, S. Wang, P. Wang, Y. Zhao, L. Yang, R.A. Tripp, Y. Sun, M.J. Meziani, X. Dong, L. Zhu, L.P. Jones, G.E. Lecroy, S. Wang, P. Wang, Y. Zhao, L. Yang, R.A. Tripp, A.C.S. Appl, Mater. Interfaces 8, 10761–10766 (2016)

    Article  CAS  Google Scholar 

  26. J. Li, V.V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann, R. Dong, W. Gao, B. Jurado-sanchez, Y. Fedorak, J. Wang, ACS Nano 8, 11118 (2014)

    Article  PubMed  CAS  Google Scholar 

  27. Y. Wang, A. Hu, J. Mater. Chem. C 2, 6921 (2014)

    Article  CAS  Google Scholar 

  28. K.A.S. Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants, A. Jafariyan, P. Wang, C.E. Bunker, Y.P. Sun, A.C.S. Appl, Mater. Interfaces 7, 8363 (2015)

    Article  CAS  Google Scholar 

  29. X. Dong, M. Al Awak, N. Tomlinson, Y. Tang, Y.P. Sun, L. Yang, PLoS ONE 12, 1 (2017)

    Google Scholar 

  30. N.A. Mahat, S.A. Shamsudina, N. Jullokb, A. HadiMa’Radzi, Desalination 493, 114618 (2020)

    Article  CAS  Google Scholar 

  31. N.A. Mahat, S.A. Shamsudin, Diam. Relat. Mater. 102, 107660 (2020)

    Article  CAS  Google Scholar 

  32. M. Lavkush Bhaisare, S. Pandey, M. Shahnawaz Khan, A. Talib, H.F. Wu, Talanta 132, 572 (2015)

    Article  PubMed  CAS  Google Scholar 

  33. H. Bao, L. Li, H. Zhang, J. Colloid Interface Sci. 328, 270 (2008)

    Article  PubMed  CAS  Google Scholar 

  34. X. Sun, Q. Zhang, K. Yin, S. Zhou, H. Li, Chem. Commun. 52, 12024 (2016)

    Article  CAS  Google Scholar 

  35. X. Hu, P. Zrazhevskiy, X. Gao, Ann. Biomed. Eng. 37, 1960 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  36. R. Bahru, N. Shaari, M.A. Mohamed, Int. J. Energy Res. 1(44), 2471 (2019)

    Google Scholar 

  37. J. Tang, J. Zhang, Y. Zhang, Y. Xiao, Y. Shi, Y. Chen, L. Ding, W. Xu, Nanoscale Res. Lett. 14, 1–10 (2019)

    Article  CAS  Google Scholar 

  38. L. Lin, Chem. Commun. 48, (2012).

  39. C. He, L. Sun, C. Zhang, X. Peng, K. Zhang, J. Zhong, Phys. Chem. Chem. Phys. 14, 8410 (2012)

    Article  PubMed  CAS  Google Scholar 

  40. Y.M. Long, C.H. Zhou, Z.L. Zhang, Z.Q. Tian, L. Bao, Y. Lin, D.W. Pang, J. Mater. Chem. 22, 5917 (2012)

    Article  CAS  Google Scholar 

  41. C. Chien, S. Li, W. Lai, Y. Yeh, H. Chen, I. Chen, C. Chen, K. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, C. Chen, Angew. Commun. 51, 6662 (2012)

    Article  CAS  Google Scholar 

  42. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, ACS Nano 6, 5102 (2012)

    Article  PubMed  CAS  Google Scholar 

  43. D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun, Sci. Rep. 4, 1 (2014)

    Article  CAS  Google Scholar 

  44. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, Nano Res. 8, 355 (2015)

    Article  CAS  Google Scholar 

  45. F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, X. Li, Nat. Commun. 9, 1–11 (2018)

    Article  CAS  Google Scholar 

  46. Q. Xu, Q. Zhou, Z. Hua, Q. Xue, C. Zhang, X. Wang, D. Pan, ACS Nano 7, 10654 (2013)

    Article  PubMed  CAS  Google Scholar 

  47. K. Linehan, H. Doyle, J. Mater. Chem. C 2, 6025 (2014)

    Article  CAS  Google Scholar 

  48. X. Sun, Q. Zhang, K. Yin, and H. Li, R. Soc. Chem. 100, (2016).

  49. S.L. Chen, W.M. Chen, F. Ishikawa, I.A. Buyanova, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  50. M.Y. Abd Rahman, A.A. Umar, M.M. Salleh, M. Ashraf, N. Far’ain, Solid State Phenom. 268, 259 (2017)

    Article  Google Scholar 

  51. G. Sandeep Kumar, R. Roy, D. Sen, U.K. Ghorai, R. Thapa, N. Mazumder, S. Saha, K.K. Chattopadhyay, Nanoscale 6, 3384 (2014)

    Article  PubMed  CAS  Google Scholar 

  52. J. Zhang, H. Wang, Y. Xiao, J. Tang, C. Liang, F. Li, H. Dong, Nano Express 12, 1–7 (2017)

    Google Scholar 

  53. K. Lingam, R. Podila, H. Qian, S. Serkiz, A.M. Rao, Mater. Views (2013). https://doi.org/10.1002/adfm.201203441

    Article  Google Scholar 

  54. H. Fu, Z. Ji, X. Chen, A. Cheng, S. Liu, Anal. Bioanal. Chem. 409, 2373 (2017)

    Article  PubMed  CAS  Google Scholar 

  55. X. Li, T. Cai, C. Chen, T.S. Chung, Water Res. 89, 50 (2016)

    Article  PubMed  CAS  Google Scholar 

  56. K. Nakata, T. Tsuchido, Y. Matsumura, J. Appl. Microbiol. 110, 568 (2010)

    Article  PubMed  CAS  Google Scholar 

  57. Y. Wang, P. Anilkumar, L. Cao, J.H. Liu, P.G. Luo, K.N. Tackett, S. Sahu, P. Wang, X. Wang, Y.P. Sun, Exp. Biol. Med. 236, 1231 (2011)

    Article  CAS  Google Scholar 

  58. J. Yan, S. Hou, Y. Yu, Y. Qiao, T. Xiao, Y. Mei, Z. Zhang, B. Wang, C.C. Huang, C.H. Lin, G. Suo, Colloids Surfaces B Biointerfaces 171, 241 (2018)

    Article  PubMed  CAS  Google Scholar 

  59. M. Havrdova, K. Hola, J. Skopalik, K. Tomankova, M. Petr, K. Cepe, K. Polakova, J. Tucek, A.B. Bourlinos, R. Zboril, Carbon N. Y. 99, 238 (2016)

    Article  CAS  Google Scholar 

  60. R.S.A. Sonthanasamy, S. Fazry, B.M. Yamin, A.M. Lazim, J. King Saud Univ. Sci. 31, 768 (2018)

    Article  Google Scholar 

  61. A.M. Lazim, S. Fazry, R.S.A. Sonthanasamy, W.Y.W. Ahmad, N.I. Hassan, Carbohydr. Polym. 137, 488 (2015)

    PubMed  Google Scholar 

  62. K. Kaviyarasu, N. Geetha, K. Kanimozhi, C. Maria Magdalane, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, M. Maaza, Mater. Sci. Eng. C 74, 325 (2017)

    Article  CAS  Google Scholar 

  63. K. Kaviyarasu, C. Maria Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, E. Subba Reddy, N.K. Rotte, C.S. Sharma, F.T. Thema, D. Letsholathebe, G.T. Mola, M. Maaza, J. Photochem. Photobiol. B Biol. 173, 466 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Fundamental Research Grant (FRGS/1/2014/SG06/UKM/03/1) from the Ministry of Higher Education Malaysia and Research University Grant (GUP-2017-109) from Universiti Kebangsaan Malaysia.

Funding

Funding was provided by Universiti Kebangsaan Malaysia (Grant No. GUP-2017-109) and Kementerian Pengajian Tinggi (MY) (Grant No.: FRGS/1/2014/SG06/UKM/03/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aisyah Shamsudin.

Ethics declarations

Competing interests

This work was supported by Kementerian Pengajian Tinggi Malaysia (Grant No.: FRGS/1/2014/SG06/UKM/03/1) and Universiti Kebangsaan Malaysia (Grant No. GUP-2017-109). The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahat, N.A., Nor, N.S.M. & Shamsudin, S.A. Effects of Positive Carbon Quantum Dots on Gram-Negative Bacteria as an Antimicrobial Agent. J Inorg Organomet Polym 32, 2428–2440 (2022). https://doi.org/10.1007/s10904-022-02314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02314-z

Keywords

Navigation