Skip to main content
Log in

Photocatalytic Degradation of Tetracycline by Z-Scheme Bi2WO6/ZIF-8

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

To improve the photocatalytic activity of Bi2WO6, ZIF-8 was successfully introduced with the in-situ growth for the first time. The addition of ZIF-8 effectively inhibited the recombination of photogenerated electron–hole pairs with further improved electron utilization efficiency. The superoxide anion, .O2, generated, greatly improved the photocatalytic activity. The performance of Bi2WO6/ZIF-8 in the photodegradation of tetracycline (TC) was studied under different conditions, including the proportions of ZIF-8, the dosage of catalyst, and the concentration of TC. The results indicated that 10 mg of B/Z/5/1 offered the best photocatalytic activity under UV light, achieving 97.8% degradation of TC (20 mg/L) within 80 min. The measured rate constant (k) for TC degradation was almost 3 times that of pure Bi2WO6. The effects of pH, HA, and inorganic anions on the degradation of TC were also studied for the simulated real water. Further, B/Z/5/1 could be reutilized up to five cycles without reduction of the catalysis performance. Therefore, the Bi2WO6/ZIF-8 heterojunction composite material can be utilized as an efficient photocatalyst for remediation of environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Hu et al., Ternary Z-scheme heterojunction of Bi2WO6 with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin (TCPP) for enhanced visible-light photocatalysis. J. Colloid Interface Sci. 540, 115–125 (2019). https://doi.org/10.1016/j.jcis.2019.01.013

    Article  PubMed  CAS  Google Scholar 

  2. G. Afreen, M. Shoeb, S. Upadhyayula, Effectiveness of reactive oxygen species generated from rGO/CdS QD heterostructure for photodegradation and disinfection of pollutants in waste water. Mater. Sci. Eng. C 108, 110372 (2020). https://doi.org/10.1016/j.msec.2019.110372

    Article  CAS  Google Scholar 

  3. Y. Lv et al., Fabrication of wide–range–visible photocatalyst Bi2WO6−x nanoplates via surface oxygen vacancies. Sci. Rep. 6(1), 19347 (2016). https://doi.org/10.1038/srep19347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. B. Miao et al., Sb2WO6/Bi2WO6 composite photocatalyst prepared by one-step hydrothermal method: Simple synthesis and excellent visible-light photocatalytic performance. Mater. Sci. Semicond. Process. 125, 105636 (2021). https://doi.org/10.1016/j.mssp.2020.105636

    Article  CAS  Google Scholar 

  5. M. Jiang et al., Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochim. Acta 196, 699–707 (2016). https://doi.org/10.1016/j.electacta.2016.02.094

    Article  CAS  Google Scholar 

  6. M. Qiu et al., The photocatalytic reduction of U(VI) into U(IV) by ZIF-8/g-C3N4 composites at visible light. Environ. Res. 196, 110349 (2021). https://doi.org/10.1016/j.envres.2020.110349

    Article  PubMed  CAS  Google Scholar 

  7. A. Malik, M. Nath, Multicore–shell nanocomposite formed by encapsulation of WO3 in zeolitic imidazolate framework (ZIF-8): as an efficient photocatalyst. J. Environ. Chem. Eng. 7(5), 103401 (2019). https://doi.org/10.1016/j.jece.2019.103401

    Article  CAS  Google Scholar 

  8. G. Li et al., In-situ growth UiO-66-NH2 on the Bi2WO6 to fabrication Z-scheme heterojunction with enhanced visible-light driven photocatalytic degradation performance. Colloids Surf. A 603, 125256 (2020). https://doi.org/10.1016/j.colsurfa.2020.125256

    Article  CAS  Google Scholar 

  9. X. Yuan et al., Design of core-shelled g-C3N4 @ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chem. Eng. J. 416, 129148 (2021). https://doi.org/10.1016/j.cej.2021.129148

    Article  CAS  Google Scholar 

  10. Y. Gao et al., Design and in situ synthesis of ZnInS@ZIF-8-nanofilms multifunctional nanocomposite: a case application for simultaneous fluorescent sensing and enhanced photocatalytic performance toward antibiotic. Microporous Mesoporous Mater. 315, 110916 (2021). https://doi.org/10.1016/j.micromeso.2021.110916

    Article  CAS  Google Scholar 

  11. N. Chang et al., Facile construction of Z-scheme AgCl/Ag-doped-ZIF-8 heterojunction with narrow band gaps for efficient visible-light photocatalysis. Colloids Surf. A 616, 126351 (2021). https://doi.org/10.1016/j.colsurfa.2021.126351

    Article  CAS  Google Scholar 

  12. Y.-J. Lai, D.-J. Lee, Pollutant degradation with mediator Z-scheme heterojunction photocatalyst in water: a review. Chemosphere 282, 131059 (2021). https://doi.org/10.1016/j.chemosphere.2021.131059

    Article  PubMed  CAS  Google Scholar 

  13. H.A. Yurtsever, A.E. Çetin, Fabrication of ZIF-8 decorated copper doped TiO2 nanocomposite at low ZIF-8 loading for solar energy applications. Colloids Surf. A 625, 126980 (2021). https://doi.org/10.1016/j.colsurfa.2021.126980

    Article  CAS  Google Scholar 

  14. T. Chankhanittha et al., Preparation, characterization, and photocatalytic study of solvothermally grown CTAB-capped Bi2WO6 photocatalyst toward photodegradation of Rhodamine B dye. Opt. Mater. 117, 111183 (2021). https://doi.org/10.1016/j.optmat.2021.111183

    Article  CAS  Google Scholar 

  15. X. Zhang et al., Preparation and mechanism investigation of Bi2WO6/UiO-66-NH2 Z-scheme heterojunction with enhanced visible light catalytic activity. Inorg. Chem. Commun. 120, 108162 (2020). https://doi.org/10.1016/j.inoche.2020.108162

    Article  CAS  Google Scholar 

  16. M.J.C. Ordoñez et al., Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 361(1), 28–37 (2010). https://doi.org/10.1016/j.memsci.2010.06.017

    Article  CAS  Google Scholar 

  17. Y. He et al., Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight. Chemosphere 284, 131386 (2021). https://doi.org/10.1016/j.chemosphere.2021.131386

    Article  PubMed  CAS  Google Scholar 

  18. Y. Zhang et al., Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Appl. Catal. B 106(3), 445–452 (2011). https://doi.org/10.1016/j.apcatb.2011.06.002

    Article  CAS  Google Scholar 

  19. H. Dai et al., Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: fabrication, applications and perspective. Coord. Chem. Rev. 441, 213985 (2021). https://doi.org/10.1016/j.ccr.2021.213985

    Article  CAS  Google Scholar 

  20. T. Chankhanittha et al., Enhanced photocatalytic performance of ZnO/Bi2WO6 heterojunctions toward photodegradation of fluoroquinolone-based antibiotics in wastewater. J. Phys. Chem. Solids 153, 109995 (2021). https://doi.org/10.1016/j.jpcs.2021.109995

    Article  CAS  Google Scholar 

  21. X. Meng, H. Qin, Z. Zhang, New insight into the enhanced visible light-driven photocatalytic activity of Pd/PdCl2-doped Bi2WO6 photocatalysts. J. Colloid Interface Sci. 513, 877–890 (2018). https://doi.org/10.1016/j.jcis.2017.12.009

    Article  PubMed  CAS  Google Scholar 

  22. M. Arif et al., Layer-assembled 3D Bi2WO6 hierarchical architectures by Ti-doping for enhanced visible-light driven photocatalytic and photoelectrochemical performance. J. Alloy. Compd. 792, 878–893 (2019). https://doi.org/10.1016/j.jallcom.2019.03.321

    Article  CAS  Google Scholar 

  23. G. Wang, L. Wang, Hydrothermal synthesis of rose-like AgVO3/Bi2WO6 heterojunctions with enhanced visible-light-driven photocatalytic activity. Phys. E Low-Dimens. Syst. Nanostruct. 103, 323–328 (2018). https://doi.org/10.1016/j.physe.2018.06.021

    Article  CAS  Google Scholar 

  24. X. Bing et al., Biomimetic synthesis of Bi2O3 /Bi2WO6 /MgAl-CLDH hybrids from lotus pollen and their enhanced adsorption and photocatalysis performance. J. Photochem. Photobiol. A 364, 449–460 (2018). https://doi.org/10.1016/j.jphotochem.2018.06.030

    Article  CAS  Google Scholar 

  25. W. Zhu et al., Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization. Appl. Catal. B Environ. 172–173, 46–51 (2015). https://doi.org/10.1016/j.apcatb.2015.02.003

    Article  CAS  Google Scholar 

  26. X. Yang et al., In situ preparation of porous metal-organic frameworks ZIF-8@Ag on poly-ether-ether-ketone with synergistic antibacterial activity. Colloids Surf. B 205, 111920 (2021). https://doi.org/10.1016/j.colsurfb.2021.111920

    Article  CAS  Google Scholar 

  27. S. Yan et al., Z-scheme interface modification by MnV2O6 for V2O5/g-C3N4 heterostructure towards efficient visible photocatalytic activity. J. Alloy. Compd. 882, 160751 (2021). https://doi.org/10.1016/j.jallcom.2021.160751

    Article  CAS  Google Scholar 

  28. J. Ni et al., Hierarchical defect-rich flower-like BiOBr/Ag nanoparticles/ultrathin g-C3N4 with transfer channels plasmonic Z-scheme heterojunction photocatalyst for accelerated visible-light-driven photothermal-photocatalytic oxytetracycline degradation. Chem. Eng. J. 419, 129969 (2021). https://doi.org/10.1016/j.cej.2021.129969

    Article  CAS  Google Scholar 

  29. F. Chen et al., Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy. Appl. Catal. B 217, 65–80 (2017). https://doi.org/10.1016/j.apcatb.2017.05.078

    Article  CAS  Google Scholar 

  30. S. Lei et al., Enhanced photocatalytic activity of N134 carbon black modified Bi2WO6 benefited from ample oxygen vacancies and boosted separation of photoexcited carriers. Mater. Res. Bull. 133, 111075 (2021). https://doi.org/10.1016/j.materresbull.2020.111075

    Article  CAS  Google Scholar 

  31. R. Wang et al., A spherical TiO2-Bi2WO6 composite photocatalyst for visible-light photocatalytic degradation of ethylene. Colloids Surf. A 602, 125048 (2020). https://doi.org/10.1016/j.colsurfa.2020.125048

    Article  CAS  Google Scholar 

  32. M. Razavian et al., Nickel supported ZIF-8.PEG modified catalyst: a designed active catalyst with high H2 productivity in steam reforming of ethanol at moderate temperature. J. Environ. Chem. Eng. 9(4), 105531 (2021). https://doi.org/10.1016/j.jece.2021.105531

    Article  CAS  Google Scholar 

  33. Y. Zhang, S.-J. Park, Facile construction of MoO3 @ZIF-8 core–shell nanorods for efficient photoreduction of aqueous Cr (VI). Appl. Catal. B 240, 92–101 (2019). https://doi.org/10.1016/j.apcatb.2018.08.077

    Article  CAS  Google Scholar 

  34. Y. Huang et al., In-situ construction of WC/Bi2WO6 nanocomposites for efficient photodegradation of bisphenol A with peroxymonosulfate activation. Ceram. Int. 47(14), 20626–20637 (2021). https://doi.org/10.1016/j.ceramint.2021.04.072

    Article  CAS  Google Scholar 

  35. Q. Liang et al., Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 456, 899–907 (2018). https://doi.org/10.1016/j.apsusc.2018.06.173

    Article  CAS  Google Scholar 

  36. Z.Y. Liang, C.X. Zhou, J. Yang, Q.F. Mo, Y.M. Zhang, Y. Tang, Visible light responsive Bi2WO6/BiOCl heterojunction with enhanced photocatalytic activity for degradation of tetracycline and rhodamine B. Inorg. Chem. Commun. 93, 136–139 (2018). https://doi.org/10.1016/j.inoche.2018.05.022

    Article  CAS  Google Scholar 

  37. M. Golshan et al., Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-D degradation: process feasibility, mechanism and pathway. J. Hazard. Mater. 359, 325–337 (2018). https://doi.org/10.1016/j.jhazmat.2018.06.069

    Article  PubMed  CAS  Google Scholar 

  38. M. Xu et al., Comparison of UVC and UVC/persulfate processes for tetracycline removal in water. Chem. Eng. J. 384, 123320 (2020). https://doi.org/10.1016/j.cej.2019.123320

    Article  CAS  Google Scholar 

  39. X. Gao et al., Enhanced photocatalytic performance of BiOCl for carbamazepine degradation by coupling H-ZSM-5 and modifying phosphate groups: improved charge separation efficiency with high redox ability. J. Taiwan Inst. Chem. Eng. 104, 301–309 (2019). https://doi.org/10.1016/j.jtice.2019.08.022

    Article  CAS  Google Scholar 

  40. F.S. Arghavan et al., Complete degradation of tamoxifen using FeNi3@SiO2@ZnO as a photocatalyst with UV light irradiation: a study on the degradation process and sensitivity analysis using ANN tool. Mater. Sci. Semicond. Process. 128, 105725 (2021). https://doi.org/10.1016/j.mssp.2021.105725

    Article  CAS  Google Scholar 

  41. Y. Liu et al., Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: kinetics and mechanism. Water Res. 95, 195–204 (2016). https://doi.org/10.1016/j.watres.2016.03.011

    Article  PubMed  CAS  Google Scholar 

  42. Y. Ji et al., Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem. Eng. J. 298, 225–233 (2016). https://doi.org/10.1016/j.cej.2016.04.028

    Article  CAS  Google Scholar 

  43. Q. Zhang et al., Solvothermal synthesis of Z-scheme AgIn5S8/Bi2WO6 nano-heterojunction with excellent performance for photocatalytic degradation and Cr(VI) reduction. J. Alloy. Compd. 805, 41–49 (2019). https://doi.org/10.1016/j.jallcom.2019.06.331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author sincerely thanks the National Natural Science Foundation of China (Grant No.22075032) and the Jiangsu Graduate Research and Practice Innovation Program (Grant Nos. KYCX21_2876, SJCX21_1196) for funding.

Author information

Authors and Affiliations

Authors

Contributions

XD: Subject idea, subject experimental design, subject data acquisition, article writing. SF: Solve relevant academic problems and optimize relevant experiments. WW: Optimize icon details. YZ, ZY, YW, XC: Related auxiliary work.

Corresponding authors

Correspondence to Sheng Feng or Xun Cao.

Ethics declarations

Conflict of interest

All the authors of this article declare that there is no dispute over economic interests with the work entitled “Photocatalytic degradation of tetracycline by Z-scheme Bi2WO6/ZIF-8”.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Feng, S., Wu, W. et al. Photocatalytic Degradation of Tetracycline by Z-Scheme Bi2WO6/ZIF-8. J Inorg Organomet Polym 32, 2371–2383 (2022). https://doi.org/10.1007/s10904-022-02273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02273-5

Keywords

Navigation