Skip to main content

Advertisement

Log in

Geotrichum candidum Mediated [Cu8O7 + P2O5] Nanocomposite Bio Fabrication, Characterization, Physicochemical Properties, and its In-Vitro Biocompatibility Evaluation

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Geotrichum candidum could biosynthesize of [G. candidum/Cu8O7 + P2O5] nanocomposite by using a biological method of fungal-free extract. Different characterization techniques such as Fourier-transform infrared spectroscopy, Scanning electron microscopy, Energy-dispersive X-ray spectroscopy, and X-ray powder diffraction (XRD). The XRD study of [G. candidum/Cu8O7 + P2O5]NC showed that this hybrid nanocomposite is a Monoclinic 2 crystal structure with a space group P \({2}_{1}/C\). The crystallite size (D) value average is 12.80 nm for [G. candidum/Cu8O7 + P2O5]NC. By using DFT computations, the direct energy gap value is 1.557 eV for [G. candidum/Cu8O7 + P2O5]NC. For [G. candidum/Cu8O7 + P2O5]NC was tested as an antibacterial against gram-positive and gram-negative bacteria, Candida albicans, and anti-fungal by well diffusion method. Minimum inhibitory concentration was measured and the values ranged from 0.02 to 0.012 g/l with different strains of bacteria and C. albicans and from 0.100 to 0.012 g/l for different strains of fungi, these results showed that [G. candidum/Cu8O7 + P2O5]NC can control pathogens in wastewater treatment units. Finally testing the efficiency of the produced [G. candidum/Cu8O7 + P2O5]NC was tested against polluted water samples with pathogenic bacteria, fungi, and certain heavy metals from Kitchener drainage in Mahalla, Gharbia governorate, Egypt. [G. candidum/Cu8O7 + P2O5]NC hybrid nanocomposite can inhibit bacteria by 90% compared to amoxicillin as a synthetic antibacterial which reduced the total count by 54.8% and fungi by reducing the total count by 100% compared to Nystatin as a standard of antifungal which reduced the total count of fungi by 98%. Also had high activity to remove of certain heavy metals nearly to 91.4% for Pb, 22.8% for Cd, 36.6% for Cr, 10.9% for Ni, and 25.8% for Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

Abbreviations

[Cu2O]NPs :

Cuprous oxide nanoparticles

[6CuO]NPs :

Six cupric oxide nanoparticles

[P2O5]NPs :

Phosphorus pentoxide nanoparticles

[TA-CuO]NPs :

Trichoderma asperellum-Copper oxide nanoparticles

DFT:

Density functional theory

DMOl3 :

A commercial (and academic) software package which uses density functional theory with a numerical radial function

TDDFT :

Time-dependent density functional theory

UV–Vis:

Ultraviolet–visible spectroscopy

FT-IR:

Fourier-transform infrared spectroscopy

XRD:

X-ray powder diffraction

SEM:

Scanning electron microscope

TEM:

Transmission electron microscopy

PDA:

Potato dextrose agar

G. candidum :

Geotrichum candidum

NC:

Nanocomposite

Cu (NO3)2 :

Cupper nitrate

PSA:

Particle size analyzer

CASTEP:

Cambridge serial total energy package

GP:

Gamma point

PBE:

Perdew–Burke–Ernzerh

Ps. aeruginosa :

Pseudomonas aeruginosa

PDA:

Potato dextrose agar

ICP:

Inductively coupled plasma

PCR:

Polymerase chain reaction

ITS:

Intergeneric transfer of ribosomal genes

hkl:

Miller index

WBX97XD/6-311 G:

Software system measures geometric parameters, vibration modes, optimized structure visualization, and energies for nanocomposite compounds processed

MIC:

Minimum inhibitory concentration

NPs:

Nanoparticles

rpm:

Rotation per minute

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

Pb:

Lead

Cd:

Cadmium

Cr:

Chromium

Ni:

Nickel

Zn:

Zinc

ROS:

Reactive oxygen species

PDB:

Potato dextrose broth

IR:

Infra-red

CuCl2 :

Copper chloride

CuSO4 :

Copper sulphate

FMOs:

Frontier molecular orbital

GGA:

Generalized gradient approximation

FWHM:

Full width at half-maximum

CFU:

Colony forming unit

SD:

Standard deviation

DNA:

Deoxyribose nucleic acid

BLAST:

Basic local alignment search tool

D:

Crystallite size

MEP:

Molecular electrostatic potential

DNP:

The double numerical basis set with polarization

GAP:

Gaussian potential approximation system

References

  1. M. Hoseinnejad, S.M. Jafari, I. Katouzian, Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 44, 161–181 (2018)

    Article  PubMed  CAS  Google Scholar 

  2. I. El Azab, H.K. Thabet, S.A. Almotairi, M. Saleh, R. Mogharbel, S. Mahmoud, A. El-Rayyes, A. Ibrahim, M.S. Zoromba, M. Abdel-Aziz, Synthesis of a novel coumarin heterocyclic derivative and fabrication of hybrid nanocomposite thin film with CoOFe2O4 for optoelectronic applications. J. Mol. Struct. 1241, 130640 (2021)

    Article  CAS  Google Scholar 

  3. N. Almutlaq, A. Al-Hossainy, Novel synthesis, structure characterization, DFT and investigation of the optical properties of diphenylphosphine compound/zinc oxide [DPPB+ ZnO] C nanocomposite thin film. Compos. Interfaces 28, 879–904 (2021)

    Article  CAS  Google Scholar 

  4. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  5. K.S. Siddiqi, A. Husen, Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res. Lett. 11, 1–15 (2016)

    Article  CAS  Google Scholar 

  6. A. Boroumand Moghaddam, F. Namvar, M. Moniri, S. Azizi, R. Mohamad, Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20, 16540–16565 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. M. Nasrollahzadeh, M.S. Sajadi, M. Atarod, M. Sajjadi, Z. Isaabadi, An introduction to green nanotechnology (Academic Press, Cambridge, 2019)

    Google Scholar 

  8. M. Zwawi, A. Attar, A. Al-Hossainy, M. Abdel-Aziz, M.S. Zoromba, Polypyrrole/functionalized multi-walled carbon nanotube composite for optoelectronic device application. Chem. Pap. 75, 6575–6589 (2021)

    Article  CAS  Google Scholar 

  9. Y. Kato, M. Suzuki, Synthesis of metal nanoparticles by microorganisms. Curr. Comput.-Aided Drug Des. 10, 589 (2020)

    CAS  Google Scholar 

  10. O. El-Gammal, D. Saad, A. Al-Hossainy, Synthesis, spectral characterization, optical properties and X-ray structural studies of S centrosymmetric N2S2 or N2S2O2 donor Schiff base ligand and its binuclear transition metal complexes. J. Mol. Struct. 1244, 130974 (2021)

    Article  CAS  Google Scholar 

  11. S. Sher, A. Rehman, Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Appl. Microbiol. Biotechnol. 103, 6007–6021 (2019)

    Article  PubMed  CAS  Google Scholar 

  12. S. Fernando, T. Gunasekara, J. Holton, Antimicrobial nanoparticles: applications and mechanisms of action. Sri Lankan J. Infec. Dis. (2018). https://doi.org/10.4038/sljid.v8i1.8167

    Article  Google Scholar 

  13. S.A. Mahmoud, A.F. Al-Hossainy, E.R. Shaaban, Combined experimental and DFT-TDDFT computational, structural and study effect of inter-diffusion Cu into CdTe thick film by annealing for optoelectronics. J. Mol. Struct. 1238, 130411 (2021)

    Article  CAS  Google Scholar 

  14. S.A. Mahmoud, A.F. Al-Hossainy, E.R. Shaaban, Effect of implanted copper into 1 μm cadmium telluride thick film by heat treatment for optoelectronics: structural, optical, and electrical properties. Int. J. Energy Res. 45, 20258–20269 (2021)

    Article  CAS  Google Scholar 

  15. M.L. Ermini, V. Voliani, Antimicrobial nano-agents: the copper age. ACS Nano 15, 6008–6029 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. A.K. Chatterjee, R. Chakraborty, T. Basu, Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25, 135101 (2014)

    Article  PubMed  CAS  Google Scholar 

  17. R.A. Soomro, S.H. Sherazi, N. Memon, M. Shah, N. Kalwar, K.R. Hallam, A. Shah, Synthesis of air stable copper nanoparticles and their use in catalysis. Adv. Mater. Lett 5, 191–198 (2014)

    Article  CAS  Google Scholar 

  18. K. Saravanakumar, S. Shanmugam, N.B. Varukattu, D. MubarakAli, K. Kathiresan, M.-H. Wang, Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J. Photochem. Photobiol. B 190, 103–109 (2019)

    Article  PubMed  CAS  Google Scholar 

  19. M.R. Eid, M.A. Ali, A.F. Al-Hossainy, Experimental characterization, TDDFT-DFT, and spin effect on [PEG/H2O–ZrO2/TiO2] h hybrid nanofluid 3D flow as potential ceramic industry application. Int. J. Chem. Reactor Eng. 19, 1135–1149 (2021)

    Article  CAS  Google Scholar 

  20. A.F. Al-Hossainy, M.R. Eid, Combined theoretical and experimental DFT-TDDFT and thermal characteristics of 3-D flow in rotating tube of [PEG + H2O/SiO2-Fe3O4] C hybrid nanofluid to enhancing oil extraction. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1948631

    Article  Google Scholar 

  21. R. Dobrucka, J. Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 23, 517–523 (2016)

    Article  PubMed  CAS  Google Scholar 

  22. R.R. Banala, V.B. Nagati, P.R. Karnati, Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J. Biol. Sci. 22, 637–644 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. M. Zarei, M. Zarei, Self-propelled micro/nanomotors for sensing and environmental remediation. Small 14, 1800912 (2018)

    Article  CAS  Google Scholar 

  24. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017)

    Article  CAS  Google Scholar 

  25. A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M. Ismail, H.A. Qari, K. Umar, M.N. Mohamad Ibrahim, Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front. Chem. 8, 341 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. R. Gobinath, V. Manasa, S. Rajendiran, K. Kumar, R. Paul, K. Basavaraj, Nanoparticle-mediated adsorption of pollutants: a way forward to mitigation of environmental pollution, microbial rejuvenation of polluted environment (Springer, Singapore, 2021), pp. 317–348

    Google Scholar 

  27. N. Powar, V. Patel, P. Pagare, R. Pandav, Cu nanoparticle: Synthesis, characterization and application. Chem. Methodol. 3, 457–480 (2019)

    Google Scholar 

  28. S.I. Bukhari, M.M. Hamed, M.H. Al-Agamy, H.S. Gazwi, H.H. Radwan, A.M. Youssif, Biosynthesis of copper oxide nanoparticles using streptomyces MHM38 and its biological applications. J. Nanomater. (2021). https://doi.org/10.1155/2021/6693302

    Article  Google Scholar 

  29. A.D. Becke, Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96, 2155–2160 (1992)

    Article  CAS  Google Scholar 

  30. M.R. Eid, A.F. Al-Hossainy, High-performance nanofluid synthesis and DFT-TDDFT study of graphene nanosheets along bent surface for enhanced oil-recovery implementations. Case Stud. Therm. Eng. 25, 100983 (2021)

    Article  Google Scholar 

  31. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989)

    Article  CAS  Google Scholar 

  32. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09 (Gaussian Inc, Wallingford, 2009)

    Google Scholar 

  33. K.B. Banu, S. Dheivamalar, l–Alanine adsorbed aluminum doped ZnO structures for nanocomposites with tailored photovoltaic properties: a DFT study. Funct. Compos. Struct. 2, 035006 (2020)

    Article  CAS  Google Scholar 

  34. A. Attar, R.D. Alharthy, M. Zwawi, M. Algarni, F. Albatati, M. Bassyouni, M.H. Abdel-Aziz, M.S. Zoromba, A.F. Al-Hossainy, Fabrication and characterization of polypyrrole/multi-walled carbon nanotubes thin films using thermal evaporation. Polymers 13, 4045 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. M. Ahmed, Y.M. Al-Hadeethi, A. Alshahrie, A.T. Kutbee, E.R. Shaaban, A.F. Al-Hossainy, Thermal analysis of a metal-organic framework ZnxCo1-X-ZIF-8 for recent applications. Polymers 13, 4051 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. A.F. Al-Hossainy, M.S. Zoromba, Fabrication, characterization and optical properties of poly (p-phenylenediamine-co–o-aminophenol) nanostructure thin film. Appl. Phys. A 127, 1–14 (2021)

    Article  CAS  Google Scholar 

  37. M.G. Shalaby, A.F. Al-Hossainy, A.M. Abo-Zeid, H. Mobark, Y.A.G. Mahmoud, Synthesis, characterization, physicochemical properties, and in-vitro anti-bacterial evaluation for doped Fe-Fusarium oxysporum bio-nanocomposite. J. Mol. Struct. 1259, 132643 (2022)

    Article  CAS  Google Scholar 

  38. F.K. El-Baz, K. Mahmoud, W.M. El-Senousy, O. Darwesh, A. El Gohary, Antiviral–antimicrobial and schistosomicidal activities of Eucalyptus camaldulensis essential oils. Int. J. Pharm. Sci. Rev. Res. 31, 262–268 (2015)

    Google Scholar 

  39. O. Darwesh, M. Shalapy, A. Abo-Zeid, Y. Mahmoud, Nano-Bioremediation of municipal wastewater using myco-synthesized iron nanoparticles. Egypt. J. Chem. 64, 8–9 (2021)

    Google Scholar 

  40. A.E.D. Mahmoud, K.M. Al-Qahtani, S.O. Alflaij, S.F. Al-Qahtani, F.A. Alsamhan, Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci. Rep. 11, 1–13 (2021)

    Article  CAS  Google Scholar 

  41. M.F. Eida, O.M. Darwesh, I.A. Matter, Cultivation of oleaginous microalgae Scenedesmus obliquus on secondary treated municipal wastewater as growth medium for biodiesel production. J. Ecol. Eng. (2018). https://doi.org/10.12911/22998993/91274

    Article  Google Scholar 

  42. I. Ahemen, O. Meludu, E. Odoh, Effect of sodium carboxymethyl cellulose concentration on the photophysical properties of zinc sulfide nanoparticles. British J. Appl. Sci. Technol. 3, 1228 (2013)

    Article  Google Scholar 

  43. N. Colthup, Introduction to infrared and Raman spectroscopy (Elsevier, Amsterdam, 2012)

    Google Scholar 

  44. S. Saif Hasan, S. Singh, R.Y. Parikh, M.S. Dharne, M.S. Patole, B. Prasad, Y.S. Shouche, Bacterial synthesis of copper/copper oxide nanoparticles. J. Nanosci. Nanotechnol. 8, 3191–3196 (2008)

    Article  CAS  Google Scholar 

  45. G. Kliche, Z. Popovic, Far-infrared spectroscopic investigations on CuO. Phys. Rev. B 42, 10060 (1990)

    Article  CAS  Google Scholar 

  46. M.S. Zoromba, A. Al-Hossainy, M. Rzaigui, A. Abdelkader, F. Alresheedi, I. El Azab, F.M. Eissa, Facile synthesis of single-crystal of o-phenylene diamine dihydrochloride as a polychloride and fabrication of high-performance semiconductor thin film. Opt. Mater. 112, 110758 (2021)

    Article  CAS  Google Scholar 

  47. N. Datta, J. Jeffery, The crystal structure of paramelaconite, Cu122+ Cu4+ O14. Acta Crystallogr. Sect. B 34, 22–26 (1978)

    Article  Google Scholar 

  48. J. Hanawalt, H. Rinn, L. Frevel, Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. Ed. 10, 457–512 (1938)

    Article  CAS  Google Scholar 

  49. M.H. Abdel-Aziz, M. Zwawi, A.F. Al-Hossainy, M.S. Zoromba, Conducting polymer thin film for optoelectronic devices applications. Polym. Adv. Technol. (2021). https://doi.org/10.1002/pat.5290

    Article  Google Scholar 

  50. R. Žalnėravičius, Synthesis, characterization and antimicrobial properties of metallic and semiconductor nanoparticles, Vilniaus Universitetas, (2020)

  51. N. Baghdadi, M.S. Zoromba, M. Abdel-Aziz, A. Al-Hossainy, M. Bassyouni, N. Salah, One-dimensional nanocomposites based on polypyrrole-carbon nanotubes and their thermoelectric performance. Polymers 13, 278 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. M.S. Zoromba, A. Alshehri, A. Al-Hossainy, M. Abdel-Aziz, Doped-poly (anthranilic acid-co-o-phenylene diamine) thin film for optoelectronic applications. Opt. Mater. 111, 110621 (2021)

    Article  CAS  Google Scholar 

  53. J.A. Rodriguez, J.Y. Kim, J.C. Hanson, M. Pérez, A.I. Frenkel, Reduction of CuO in H 2: in situ time-resolved XRD studies. Catal. Lett. 85, 247–254 (2003)

    Article  CAS  Google Scholar 

  54. A. Ibrahim, M. Abdel-Aziz, M.S. Zoromba, A. Al-Hossainy, Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synth. Met. 238, 1–13 (2018)

    Article  CAS  Google Scholar 

  55. A. Al-Hossainy, M.S. Zoromba, O. El-Gammal, F.I. El-Dossoki, Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials. Struct. Chem. 30, 1365–1380 (2019)

    Article  CAS  Google Scholar 

  56. M. Abdel-Aziz, M.S. Zoromba, M. Bassyouni, M. Zwawi, A. Alshehri, A. Al-Hossainy, Synthesis and characterization of Co-Al mixed oxide nanoparticles via thermal decomposition route of layered double hydroxide. J. Mol. Struct. 1206, 127679 (2020)

    Article  CAS  Google Scholar 

  57. H.K. Thabet, A. Al-Hossainy, M. Imran, Synthesis, characterization, and DFT modeling of novel organic compound thin films derived from 2-amino-4-(2-hydroxy-3-methoxyphenyl)-4H-thiazolo [3, 2-a][1, 3, 5] triazin-6 (7H)-one. Opt. Mater. 105, 109915 (2020)

    Article  CAS  Google Scholar 

  58. Y. Liu, L. Liao, J. Li, C. Pan, From copper nanocrystalline to CuO nanoneedle array: synthesis, growth mechanism, and properties. J. Phys. Chem. C 111, 5050–5056 (2007)

    Article  CAS  Google Scholar 

  59. Y. Lu, N. Zhang, Q. Zhao, J. Liang, J. Chen, Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries. Nanoscale 7, 2770–2776 (2015)

    Article  PubMed  CAS  Google Scholar 

  60. P. Chand, A. Gaur, A. Kumar, Structural, optical and ferroelectric behavior of CuO nanostructures synthesized at different pH values. Superlattices Microstruct. 60, 129–138 (2013)

    Article  CAS  Google Scholar 

  61. A.F. Al-Hossainy, Synthesis, spectral, thermal, optical dispersion and dielectric properties of nanocrystalline dimer complex (PEPyr–diCd) thin films as novel organic semiconductor. Bull. Mater. Sci. 39, 209–222 (2016)

    Article  CAS  Google Scholar 

  62. A. Abed-Elmageed, M.S. Zoromba, R. Hassanien, A.F. Al-Hossainy, Facile synthesis of spin-coated poly (4-nitroaniline) thin film: structural and optical properties. Opt. Mater. 109, 110378 (2020)

    Article  CAS  Google Scholar 

  63. A.F. Al-Hossainy, A.Y. Sediq, S.A. Mahmoud, Combined experimental and DFT-TDDFT characterization studies of crystalline mesoporous-assembled [ZrO2] NPs and [DPPP+ Gly/ZrO2] C nanocomposite thin film. Electron. Mater. Lett. 17, 188–206 (2021)

    Article  CAS  Google Scholar 

  64. R. Cuevas, N. Durán, M. Diez, G. Tortella, O. Rubilar, Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests. J. Nanomater. (2015). https://doi.org/10.1155/2015/789089

    Article  Google Scholar 

  65. D.T. Reis, I.H.S. Ribeiro, D.H. Pereira, DFT study of the application of polymers cellulose and cellulose acetate for adsorption of metal ions (Cd 2+, Cu 2+ and Cr 3+) potentially toxic. Polym. Bull. 77, 3443–3456 (2020)

    Article  CAS  Google Scholar 

  66. P. Mori-Sanchez, Q. Wu, W. Yang, Accurate polymer polarizabilities with exact exchange density-functional theory. J. Chem. Phys. 119, 11001–11004 (2003)

    Article  CAS  Google Scholar 

  67. P. Demir, F. Akman, Molecular structure, spectroscopic characterization, HOMO and LUMO analysis of PU and PCL grafted onto PEMA-co-PHEMA with DFT quantum chemical calculations. J. Mol. Struct. 1134, 404–415 (2017)

    Article  CAS  Google Scholar 

  68. T. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, M. El-Mansy, Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 76, 4769–4784 (2019)

    Article  CAS  Google Scholar 

  69. A.H. Mohamad, S.R. Saeed, O.G. Abdullah, Synthesis of very-fine PbS nanoparticles dispersed homogeneously in MC matrix: effect of concentration on the structural and optical properties of host polymer. Mater. Res. Express 6, 115332 (2019)

    Article  Google Scholar 

  70. M.H. Abdel-Aziz, E.Z. El-Ashtoukhy, M. Bassyouni, A.F. Al-Hossainy, E.M. Fawzy, S. Abdel-Hamid, M.S. Zoromba, DFT and experimental study on adsorption of dyes on activated carbon prepared from apple leaves. Carbon Lett. 31, 863–878 (2021)

    Article  Google Scholar 

  71. S. Kaya, B. Tüzün, C. Kaya, I.B. Obot, Determination of corrosion inhibition effects of amino acids: quantum chemical and molecular dynamic simulation study. J. Taiwan Inst. Chem. Eng. 58, 528–535 (2016)

    Article  CAS  Google Scholar 

  72. S. Kaya, L. Guo, C. Kaya, B. Tüzün, I. Obot, R. Touir, N. Islam, Quantum chemical and molecular dynamic simulation studies for the prediction of inhibition efficiencies of some piperidine derivatives on the corrosion of iron. J. Taiwan Inst. Chem. Eng. 65, 522–529 (2016)

    Article  CAS  Google Scholar 

  73. Y. Vidya, K. Anantharaju, H. Nagabhushana, S. Sharma, H. Nagaswarupa, S. Prashantha, C. Shivakumara, Combustion synthesized tetragonal ZrO2: Eu3+ nanophosphors: structural and photoluminescence studies. Spectrochim. Acta Part A 135, 241–251 (2015)

    Article  CAS  Google Scholar 

  74. R.J. Pinto, S. Daina, P. Sadocco, C.P. Neto, T. Trindade, Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res. Int. (2013). https://doi.org/10.1155/2013/280512

    Article  PubMed  PubMed Central  Google Scholar 

  75. M. Godoy-Gallardo, U. Eckhard, L.M. Delgado, Y.J. de Roo Puente, M. Hoyos-Nogués, F.J. Gil, R.A. Perez, Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioactive Mater. 6, 4470–4490 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.033

    Article  CAS  Google Scholar 

  76. L.M. Armijo, S.J. Wawrzyniec, M. Kopciuch, Y.I. Brandt, A.C. Rivera, N.J. Withers, N.C. Cook, D.L. Huber, T.C. Monson, H.D.C. Smyth, M. Osiński, Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J. Nanobiotechnol. 18, 1–27 (2020)

    Article  CAS  Google Scholar 

  77. L.M. Armijo, S.J. Wawrzyniec, M. Kopciuch, Y.I. Brandt, A.C. Rivera, N.J. Withers, N.C. Cook, D.L. Huber, T.C. Monson, H.D. Smyth, Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J. Nanobiotechnol. 18, 1–27 (2020)

    Article  CAS  Google Scholar 

  78. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. S.K. Babangida, A. Muhammad, A. Garba, A.B. Sallau, Antioxidants in bioremediation of chromium (VI) by conventional and nanotechnological approaches: a review. Toxicol. Environ. Chem. 103, 162–183 (2021)

    Article  CAS  Google Scholar 

  80. G.R. Rudramurthy, M.K. Swamy, U.R. Sinniah, A. Ghasemzadeh, Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21, 836 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  81. D.A. El-Nagar, S.A. Massoud, S.H. Ismail, Removal of some heavy metals and fungicides from aqueous solutions using nano-hydroxyapatite, nano-bentonite and nanocomposite. Arab. J. Chem. 13, 7695–7706 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MGS: Methodology, Data curation, Formal analysis, Writing—original draft, AFA-H: Methodology, Data curation, Formal analysis, Writing—original draft, AMA-Z: Methodology—original draft, HM: Data curation, Formal analysis, OMD: Methodology, Data curation, and YA-GM: Methodology, Data curation, Formal analysis, Writing—original draft.

Corresponding author

Correspondence to Ahmed F. Al-Hossainy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10464 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, M.G., Al-Hossainy, A.F., Abo-Zeid, A.M. et al. Geotrichum candidum Mediated [Cu8O7 + P2O5] Nanocomposite Bio Fabrication, Characterization, Physicochemical Properties, and its In-Vitro Biocompatibility Evaluation. J Inorg Organomet Polym 32, 2398–2415 (2022). https://doi.org/10.1007/s10904-022-02252-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02252-w

Keywords

Navigation