Skip to main content
Log in

Influence of Incorporation of Gallium Oxide Nanoparticles on the Structural and Optical Properties of Polyvinyl Alcohol Polymer

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Author Correction to this article was published on 26 July 2021

This article has been updated

Abstract

In the present work, gallium oxide nanoparticles (nGa2O3) are synthesized via the thermal microwave combustion method, while nanocomposites of polyvinyl alcohol (PVA) polymer with various concentrations (0, 1, 2, 3, 4, and 5 wt%) of nGa2O3 are prepared by the casting technique. The structural characterization of nGa2O3, PVA, and films of PVA-Ga2O3 nanocomposites are studied using X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM), and Fourier-transform infrared (FTIR) spectroscopy. The HRTEM and XRD examinations showed that the prepared nGa2O3 has an average crystallite size of ~ 5.6 nm and particle size of ~ 0.9 µm. The FTIR analysis reveals the occurrence of some interactions between nGa2O3 and the functional groups of the PVA structure. On another side, the refractive index, absorption coefficient, and optical bandgap (Eg) were determined using the Wemple-DiDomenico single oscillator model. It was shown that Eg slightly reduced from 3.61 to 3.55 eV with increasing the Ga2O3 content to 3 wt%, while raised again up to 3.58 eV for 5 wt% Ga2O3. Other optical characteristics such as the optical density, extinction coefficient, optical susceptibility, thermal emissivity, optical sheet resistance for the PVA−Ga2O3 nanocomposites are investigated. The linear and nonlinear optical parameters together with their dependencies on the doping ratio reveals the qualification of PVA−Ga2O3 nanocomposites for nonlinear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen, Prog. Polym. Sci. 59, 41 (2016)

    Article  CAS  Google Scholar 

  2. S.A. Umoren, M.M. Solomon, Prog. Mater. Sci. 104, 3 (2019)

    Article  CAS  Google Scholar 

  3. S. Mishra, L. Unnikrishnan, S.K. Nayak, S. Mohanty, Macromol. Mater. Eng. 304, 1800463 (2019)

    Article  CAS  Google Scholar 

  4. T.A. Hamdalla, T.A. Hanafy, Optik 127, 878 (2016)

    Article  CAS  Google Scholar 

  5. E.A. Van Etten, E.S. Ximenes, L.T. Tarasconi, I.T. Garcia, M.M. Forte, H. Boudinov, Thin Solid Films 568, 111 (2014)

    Article  CAS  Google Scholar 

  6. H. Xi, D. Chen, L. Lv, P. Zhong, Z. Lin, J. Chang, H. Wang, B. Wang, X. Ma, C. Zhang, RSC Adv. 7, 52930 (2017)

    Article  CAS  Google Scholar 

  7. M. Liao, H. Liao, J. Ye, P. Wan, L. Zhang, A.C.S. Appl, Mater. Interfaces 11, 47358 (2019)

    Article  CAS  Google Scholar 

  8. S. Mahendia, A.K. Tomar, S. Kumar, Mater. Sci. Eng. B 176, 530 (2011)

    Article  CAS  Google Scholar 

  9. T.A. Hamdalla, T.A. Hanafy, A.E. Bekheet, J. Spectrosc. 2015 (2015). https://doi.org/10.1155/2015/204867

  10. M. Liong, H. Shao, J.B. Haun, H. Lee, R. Weissleder, Adv. Mater. 22, 5168 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W.H. Pan, S.J. Lue, C.M. Chang, Y.L. Liu, J. Membr. Sci. 376, 225 (2011)

    Article  CAS  Google Scholar 

  12. K.T. Arul, E. Manikandan, R. Ladchumananandasivam, M. Maaza, Polym. Int. 65, 1482 (2016)

    Article  CAS  Google Scholar 

  13. R. Singh, S.G. Kulkarni, S.S. Channe, Polym. Bull. 70, 1251 (2013)

    Article  CAS  Google Scholar 

  14. S. Hussein, A. Abd-Elnaiem, N. Ali, A. Mebed, Curr. Nanosci. 16, 994 (2020). https://doi.org/10.2174/1573413716666200310121947

    Article  CAS  Google Scholar 

  15. P.V.A. Padmanabhan, K.P. Sreekumar, T.K. Thiyagarajan, R.U. Satpute, K. Bhanumurthy, P. Sengupta, G.K. Dey, K.G.K. Warrier, Vacuum 80, 1252 (2006)

    Article  CAS  Google Scholar 

  16. C. Srikanth, B.C. Sridhar, M.V.N. Prasad, R.D. Mathad, J. Adv. Phys. 5, 105 (2016)

    Article  Google Scholar 

  17. M. Rashad, Opt. Mater. 105, 109857 (2020)

  18. K.F. MacDonald, V.A. Fedotov, S. Pochon, K.J. Ross, G.C. Stevens, N.I. Zheludev, W.S. Brocklesby, V.I. Emel’Yanov, Appl. Phys. Lett. 80, 1643 (2002)

    Article  CAS  Google Scholar 

  19. S. Comby, J.C.G. Bünzli, Handb. Phys. Chem. Rare Earths 37, 217 (2007). https://doi.org/10.1016/S0168-1273(07)37035-9

    Article  CAS  Google Scholar 

  20. S.C. Vanithakumari, K.K. Nanda, Adv. Mater. 21, 3581 (2009)

    Article  CAS  Google Scholar 

  21. T. Shao, P. Zhang, Z. Li, L. Jin, Chin. J. Catal. 34, 1551 (2013)

    Article  CAS  Google Scholar 

  22. Y. Xiao, W. Liu, C. Liu, H. Yu, H. Liu, J. Han, W. Liu, W. Zhang, X. Wu, S. Ding, Z. Liu, Appl. Surf. Sci. 530, 147276 (2020)

    Article  CAS  Google Scholar 

  23. W. Huang, P.H. Chien, K. McMillen, S. Patel, J. Tedesco, L. Zeng, S. Mukherjee, B. Wang, Y. Chen, G. Wang, Y. Wang, Proc. Natl. Acad. Sci. USA. 117, 18231 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Rashad, T.A. Hamdalla, S.E. Al Garni, A.A.A. Darwish, S.M. Seleim, Opt. Mater. 75, 869 (2018)

    Article  CAS  Google Scholar 

  25. S. Yu, G. Zhang, D. Carloni, Y. Wu, Ceram. Int. 46, 21757 (2020)

    Article  CAS  Google Scholar 

  26. O.G. Abdullah, S.A. Saleem, J. Electron. Mater. 45, 5910 (2016)

    Article  CAS  Google Scholar 

  27. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Results Phys. 6, 1103 (2016)

    Article  Google Scholar 

  28. W. Zhang, D.J. Webb, Opt. Lett. 39, 3026 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. H.S. Mansur, R.L. Oréfice, A.A.P. Mansur, Polymer 45, 7193 (2004)

    Article  CAS  Google Scholar 

  30. T.A. Hanafy, J. Appl. Phys. 112, 034102 (2012)

    Article  PubMed Central  CAS  Google Scholar 

  31. Y. Zhao, R.L. Frost, W.N. Martens, J. Phys. Chem. C 111, 16290 (2007)

    Article  CAS  Google Scholar 

  32. A. Abu El-Fadl, G.A. Mohamad, A.B. Abd El-Moiz, M. Rashad, Physica B 366, 44 (2005)

    Article  CAS  Google Scholar 

  33. G. Galeczki, Infrared Phys. 31, 215 (1991)

    Article  CAS  Google Scholar 

  34. E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)

    Article  CAS  Google Scholar 

  35. N.B. Kumar, V. Crasta, B.M. Praveen, Phys. Res. Int. (2014). https://doi.org/10.1155/2014/742378

    Article  Google Scholar 

  36. M. Aslam, M.A. Kalyar, Z.A. Raza, J. Electron. Mater. 47, 3912 (2018)

    Article  CAS  Google Scholar 

  37. A.M. El Sayed, S. El-Sayed, W.M. Morsi, S. Mahrous, A. Hassen, Polym. Compos. 35, 1842 (2014)

    Article  CAS  Google Scholar 

  38. M. Abdallh, O. Hamood, E. Yousif, Al-Nahrain J. Sci. 16, 17 (2013). http://5.10.230.12/index.php/anjs/article/view/706/632

  39. M. Ben Rabeh, N. Khedmi, M.A. Fodha, M. Kanzari, Energy Procedia 44, 52 (2014)

    Article  CAS  Google Scholar 

  40. M.I. Abd-Elrahman, M.M. Hafiz, A.M. Abdelraheem, A.A. Abu-Sehly, Opt. Mater. 50, 99 (2015)

    Article  CAS  Google Scholar 

  41. F. Urbach, Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  42. R.M. Hassan, S. Moustafa, A.M. Abd-Elnaiem, J. Mater. Sci.: Mater. Electron. 31, 20043 (2020)

    Google Scholar 

  43. H. El-Zahed, Phys. B 307, 95 (2001)

    Article  CAS  Google Scholar 

  44. Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, H. Uyama, Appl. Opt. 37, 7091 (1998)

    Article  CAS  PubMed  Google Scholar 

  45. N.M. Ravindra, V.K. Srivastava, Infrared Phys. 19, 603 (1979)

    Article  CAS  Google Scholar 

  46. S. Mahendia, A.K. Tomar, P.K. Goyal, S. Kumar, J. Appl. Phys. 113, 073103 (2013)

    Article  CAS  Google Scholar 

  47. S.B. AzizJ, Electron. Mater. 45, 736 (2016)

    Article  CAS  Google Scholar 

  48. S.B. Aziz, M.A. Brza, M.M. Nofal, R.T. Abdulwahid, S.A. Hussen, A.M. Hussein, W.O. Karim, Materials 13, 3675 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  49. S.H. Wemple, M. Didomenico, Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  50. H. Ticha, L. Tichy, J. Optoelectron. Adv. Mater 4, 381 (2002)

    CAS  Google Scholar 

  51. C.C. Wang, Phys. Rev. B 2, 2045 (1970)

    Article  Google Scholar 

  52. M. Reidinger, M. Rydzek, C. Scherdel, M. Arduini-Schuster, J. Manara, Thin Solid Films 517, 3096 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Abd-Elnaiem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article unfortunately contained a mistake. There was a typo in the author name Meshari Aljohani. The original article has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elnaiem, A.M., Hamdalla, T.A., Seleim, S.M. et al. Influence of Incorporation of Gallium Oxide Nanoparticles on the Structural and Optical Properties of Polyvinyl Alcohol Polymer. J Inorg Organomet Polym 31, 4141–4149 (2021). https://doi.org/10.1007/s10904-021-02035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02035-9

Keywords

Navigation