Skip to main content
Log in

Synthesis and Characterization of MoO3 for Photocatalytic Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

An Author Correction to this article was published on 12 July 2021

This article has been updated

Abstract

The molybdenum trioxide (MoO3) is the highly intriguing transition metal oxide with outstanding photocatalytic activity mainly with organic pollutants. In this study, two types of MoO3 has been successfully synthesized by sol–gel (SG-MoO3) and hydrothermal (HT-MoO3) methods. The structure, morphology, and functional groups of the synthesized samples have been characterized by X-ray diffraction (XRD), scanning, and transmission electron microscope (SEM and TEM), and Fourier-transform infrared spectroscopy, respectively. The thermal stability has been explored by thermogravimetric analysis (TGA). The obtained results show that both samples were crystallized in the orthorhombic structure. FTIR peaks for both samples are inconsistent with the XRD results. SEM images show that the prepared samples possess a belt-like shape; their size is ranging from 12.7 to 44.5 nm for SG-MoO3, and 2.5–7.7 nm for HT-MoO3. To assess the photocatalytic activity, the photodegradation of methylene blue (MB) was studied. The effect of the exposure time, catalyst load, and wavelength of the excitation source was investigated. The results showed that the synthesized MoO3 has a good photocatalytic activity to degrade the organic dye of MB in the aqueous solution. The removal rate of the MB with α-MoO3 increases as the irradiation time increases. It is also found that the removal rate of MB increases with the increase of the catalyst load prepared by both methods. Furthermore, the photodegradation efficiency of the MB with MoO3 induced by visible light irradiation is slightly higher than the samples irradiated by UV light at the same catalyst concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. M.B. Rahmani, S.H. Keshmiri, J. Yu, A.Z. Sadek, L. Al-Mashat, A. Moafi, K. Lathamd, Y.X. Li, W. Wlodarski, K. Kalantar-Zadeh. Gas sensing properties of thermally evaporated lamellar MoO3. Sens. Actuator B-Chem. 145(1), 13–19. (2010). https://doi.org/10.1016/j.snb.2009.11.007

  2. M. Khoshroo, H. Hosseini-Monfared, Oxidation of sulfides with H2O2 catalyzed by impregnated graphene oxide with Co–Cu–Zn doped Fe3O4/Co3O4–MoO3 nanocomposite in acetonitrile. J. Inorg. Organomet. Polym. Mater. 27(1), 165–175 (2017). https://doi.org/10.1007/s10904-016-0459-7

    Article  CAS  Google Scholar 

  3. K.M. Sawicka, A.K. Prasad, P.I. Gouma, Metal oxide nanowires for use in chemical sensing applications. Sens. Lett. 3, 31–35 (2005). https://doi.org/10.1166/sl.2005.010

    Article  CAS  Google Scholar 

  4. M.J. Dunlop, C. Agatemor, A.S. Abd-El-Aziz, R. Bissessur, Nanocomposites derived from molybdenum disulfide and an organoiron dendrimer. J. Inorg. Organomet. Polym. Mater. 27(1), 84–89 (2017). https://doi.org/10.1007/s10904-017-0582-0

    Article  CAS  Google Scholar 

  5. Y. Mo, Z. Tan, L. Sun, Y. Lu, X. Liu, Ethanol-sensing properties of α-MoO3 nanobelts synthesized by hydrothermal method. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152166

    Article  Google Scholar 

  6. M.S. Al-Buriahi, H.H. Somaily, A. Alalawi, S. Alraddadi, Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01750-z

    Article  Google Scholar 

  7. A. Ganguly, R. George, Synthesis, characterization and gas sensitivity of MoO3 nanoparticles. Bull. Mater. Sci. 30, 183–185 (2007). https://doi.org/10.1007/s12034-007-0033-6

    Article  CAS  Google Scholar 

  8. A. Chithambararaj, A. ChandraBose, Microwave assisted ultra fast synthesis of 1-D molybdenum oxide nanocrystals: structural and electrical studies. Adv. Mater. Res. 488–489, 940–4 (2012). https://doi.org/10.4028/www.scientific.net/AMR.488-489.940

    Article  CAS  Google Scholar 

  9. E. Comini, L. Yubao, Y. Brando, G. Sberveglieri, Gas sensing properties of MoO3 nanorods to CO and CH 3OH. Chem. Phys. Lett. 407, 368–371 (2005). https://doi.org/10.1016/j.cplett.2005.03.116

    Article  CAS  Google Scholar 

  10. C.V. Krishnan, J. Chen, C. Burger, B. Chu, Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process. J. Phys. Chem. B 110, 20182–20188 (2006). https://doi.org/10.1021/jp063156f

    Article  CAS  PubMed  Google Scholar 

  11. M. Abinaya, K. Saravanakumar, E. Jeyabharathi, V. Muthuraj, Synthesis and characterization of 1D-MoO3 nanorods using abutilon indicum extract for the photoreduction of hexavalent chromium. J. Inorg. Organomet. Polym. Mater. 29(1), 101–110 (2019). https://doi.org/10.1007/s10904-018-0970-0

    Article  CAS  Google Scholar 

  12. Y. Li, H. Ren, Q. Jiao, Preparation and characterization of MoO3 with different morphologies. Ferroelectrics 527, 113–118 (2018). https://doi.org/10.1080/00150193.2018.1450556

    Article  CAS  Google Scholar 

  13. P. Dumrongrojthanath, A. Phuruangrat, S. Thipkonglas, B. Kuntalue, S. Thongtem, T. Thongtem, Synthesis and characterization of Ce-doped MoO3 nanobelts for using as visible-light-driven photocatalysts. Superlattices Microstruct. 120, 241–249 (2018). https://doi.org/10.1016/j.spmi.2018.05.052

    Article  CAS  Google Scholar 

  14. C. Ma, X. Zou, H. Li, A. Li, Z. Gao, L. Zhu, Z. Huang, Flame synthesized MoO3 nanobelts and nanoparticles coated with BiVO4 for photoelectrochemical hydrogen. Energy Convers. Manag. 205, 112332 (2020)

    Article  CAS  Google Scholar 

  15. M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Mater. Chem. Phys. 118(1), 174–80 (2009)

    Article  CAS  Google Scholar 

  16. J. Reszczyńska, T. Grzyb, Z. Wei, M. Klein, E. Kowalska, B. Ohtani et al., Photocatalytic activity and luminescence properties of RE3+-TiO2 nanocrystals prepared by sol-gel and hydrothermal methods. Appl. Catal. B 181, 825–837 (2016). https://doi.org/10.1016/j.apcatb.2015.09.001

    Article  CAS  Google Scholar 

  17. V.S. Shrivastava, Photocatalytic degradation of methylene blue dye and chromium metal from wastewater using nanocrystalline TiO2. Semiconductor 4, 1244–1254 (2012)

    CAS  Google Scholar 

  18. S. Dhanavel, E. Nivethaa, V. Narayanan, A. Stephen, Visible light induced photocatalytic degradation of methylene blue using polyaniline modified molybdenum trioxide. Mechanika 9, 1–6 (2017). https://doi.org/10.2412/mmse.63.64.916

    Article  Google Scholar 

  19. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of heavy metals from industrial wastewaters: a review removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev. (2017). https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  20. R. Fouad, Photocatalytic removal of methylene blue dye by using of ZnS and CdS. Iraqi J. Phys. 15(33), 11–6 (2017)

    Google Scholar 

  21. N. Tariq, R. Fatima, S. Zulfiqar, A. Rahman, M.F. Warsi, I. Shakir, Synthesis and characterization of MoO3/CoFe2O4 nanocomposite for photocatalytic applications. Ceram. Int. 46(13), 21596–21603 (2020)

    Article  CAS  Google Scholar 

  22. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts 3, 189–218 (2013). https://doi.org/10.3390/catal3010189

    Article  CAS  Google Scholar 

  23. M. Liao, L. Wu, Q. Zhang, J. Dai, W. Yao, Controlled morphology of single-crystal molybdenum trioxide nanobelts for photocatalysis. J. Nanosci. Nanotechnol. 20(3), 1917–1921 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal oxides as photocatalysts. J. Saudi Chem. Soc. 19, 462–464 (2015). https://doi.org/10.1016/j.jscs.2015.04.003

    Article  Google Scholar 

  25. M. Chehbouni, Environmental, synthetic, and materials applications of molybdenum trioxide. PhD diss., Oklahoma State University (2006)

  26. M. Rahmani, T. Sedaghat, A facile sol–gel process for synthesis of ZnWO4 nanopartices with enhanced band gap and study of its photocatalytic activity for degradation of methylene blue. J. Inorg. Organomet. Polym. Mater. 29, 220–228 (2019). https://doi.org/10.1007/s10904-018-0981-x

    Article  CAS  Google Scholar 

  27. J. Zou, K. Wu, H. Wu, J. Guo, L. Zhang, Synthesis of heterostructure d-MnO2/h-MoO3 nanocomposite and the enhanced photodegradation activity of methyl orange in aqueous solutions. J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-019-04225-w

    Article  Google Scholar 

  28. T.H. Chiang, H.C. Yeh, A novel synthesis of α-MoO3 nanobelts and the characterization. J. Alloys Compd. 585, 535–541 (2014). https://doi.org/10.1016/j.jallcom.2013.09.137

    Article  CAS  Google Scholar 

  29. A. Kanneganti, C. Manasa, P. Doddapaneni, A sustainable approach towards synthesis of MoO3 nanoparticles using citrus limetta pith extract. Int. J. Eng. Adv. Technol. 3, 128–30 (2014)

    Google Scholar 

  30. P.S. Tamboli, C.V. Jagtap, V.S. Kadam, R.V. Ingle, R.S. Vhatkar, S.S. Mahajan et al., Spray pyrolytic deposition of α-MoO3 film and its use in dye-sensitized solar cell. Appl. Phys. A 124, 1–10 (2018). https://doi.org/10.1007/s00339-018-1763-6

    Article  CAS  Google Scholar 

  31. D. Xiang, C. Han, J. Zhang, W. Chen, Gap states assisted MoO3 nanobelt photodetector with wide spectrum response. Sci. Rep. 4, 1–6 (2015). https://doi.org/10.1038/srep04891

    Article  CAS  Google Scholar 

  32. A. Phuruangrat, U. Cheed-Im, T. Thongtem, S. Thongtem, High visible light photocatalytic activity of Eu-doped MoO3 nanobelts synthesized by hydrothermal method. Mater. Lett. 172, 166–170 (2016). https://doi.org/10.1016/j.matlet.2016.02.141

    Article  CAS  Google Scholar 

  33. X. Hou, J. Huang, M. Liu, X. Li, Z. Hu, Z. Feng et al., Single-crystal MoO3 micrometer and millimeter belts prepared from discarded molybdenum disilicide heating elements. Sci. Rep. 8, 2–9 (2018). https://doi.org/10.1038/s41598-018-34849-y

    Article  CAS  Google Scholar 

  34. J. Peña-Bahamonde, C. Wu, S.K. Fanourakis, S.M. Louie, J. Bao, D.F. Rodrigues, Oxidation state of Mo affects dissolution and visible-light photocatalytic activity of MoO3 nanostructures. J. Catal. 381, 508–519 (2020). https://doi.org/10.1016/j.jcat.2019.11.035

    Article  CAS  Google Scholar 

  35. T.H. Chiang, H.C. Yeh, The synthesis of α-MoO3 by ethylene glycol. Materials (Basel) 6, 4609–4625 (2013). https://doi.org/10.3390/ma6104609

    Article  CAS  Google Scholar 

  36. P. Wongkrua, T. Thongtem, S. Thongtem, Synthesis of h- and α-MoO3 by refluxing and calcination combination: phase and morphology transformation, photocatalysis, and photosensitization. J. Nanomater. (2013). https://doi.org/10.1155/2013/702679

    Article  Google Scholar 

  37. S.K. Sen, U.C. Barman, M.S. Manir, P. Mondal, S. Dutta, M. Paul, M.A. Chowdhury, M.A. Hakim, X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye–Scherrer, Williamson–Hall and Halder–Wagner methods. Adv. Nat. Sci. Nanosci. Nanotechnol. 11(2), 025004 (2020)

    Article  CAS  Google Scholar 

  38. A. Bouzidi, N. Benramdane, H. Tabet-Derraz, C. Mathieu, B. Khelifa, R. Desfeux, Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spray pyrolysis technique. Mater. Sci. Eng. B. 97(1), 5–8 (2003). https://doi.org/10.1016/S0921-5107(02)00385-9

    Article  Google Scholar 

  39. A. Chithambararaj, A.C. Bose, Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. J. Alloys Compd. 509, 8105–8110 (2011). https://doi.org/10.1016/j.jallcom.2011.05.067

    Article  CAS  Google Scholar 

  40. S.N. Lou, N. Yap, J. Scott, R. Amal, Y.H. Ng, Influence of MoO3 (110) crystalline plane on its self-charging photoelectrochemical properties. Sci. Rep. (2014). https://doi.org/10.1038/srep07428

    Article  PubMed  PubMed Central  Google Scholar 

  41. S. Singhal, R. Sharma, C. Singh, S. Bansal, Enhanced photocatalytic degradation of methylene blue using ZnFe2O4/MWCNT composite synthesized by hydrothermal method. Indian J. Mater. Sci. 2013, 1–6 (2013). https://doi.org/10.1155/2013/356025

    Article  Google Scholar 

  42. S.A. Phaltane, S.A. Vanalakar, T.S. Bhat, P.S. Patil, S.D. Sartale, L.D. Kadam, Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles. J. Mater. Sci. Mater. Electron. 28, 8186–8191 (2017). https://doi.org/10.1007/s10854-017-6527-0

    Article  CAS  Google Scholar 

  43. A. Chithambararaj, N.S. Sanjini, S. Velmathi, A. Chandra Bose, Preparation of h-MoO3 and α-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation. Phys. Chem. Chem. Phys. 15, 14761–14769 (2013). https://doi.org/10.1039/c3cp51796a

    Article  CAS  PubMed  Google Scholar 

  44. A. Singh, S. Kumar, B. Ahmed, R.K. Singh, A.K. Ojha, Temperature induced modifications in shapes and crystal phases of MoO3 for enhanced photocatalytic degradation of dye waste water pollutants under UV irradiation. J. Alloys Compd. 806, 1368–1376 (2019). https://doi.org/10.1016/j.jallcom.2019.07.272

    Article  CAS  Google Scholar 

  45. R.B. Anjaneyulu, B.S. Mohan, G.P. Naidu, R. Muralikrishna, Visible light enhanced photocatalytic degradation of methylene blue by ternary nanocomposite, MoO3/Fe2O3/rGO. J. Asian Ceram. Soc. 6, 183–195 (2018). https://doi.org/10.1080/21870764.2018.1479011

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the Project Number IF 2020022Sci. The authors also gratefully acknowledge the use of the services and facilities of the Basic and Applied Scientific Research Center (BASRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Massoudi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The original version of this article unfortunately contained a mistake. The affiliation of author Khaled A. Elsayed was incorrect. The corrected affiliation is given in 3 below. The original article was corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Alotaibi, A.L., Altamimi, N., Howsawi, E. et al. Synthesis and Characterization of MoO3 for Photocatalytic Applications. J Inorg Organomet Polym 31, 2017–2029 (2021). https://doi.org/10.1007/s10904-021-01939-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01939-w

Keywords

Navigation