Skip to main content
Log in

Radiation-Induced Improving Mechanical and Thermal Properties of Carboxymethyl Cellulose/Clay Composite for Application in Removal of Copper(II) Ions from Wastewater

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A study was carried out on the effect of gamma irradiation on the mechanical and thermal properties of carboxymethyl cellulose (CMC)/Ca-montmorillonite clay composite, prepared by blending using solvent method. In this study, carboxymethyl cellulose was used as a hosting matrix where clay was added to there at different contents: 0.25, 0.5, 1, 1.5 wt%, as a filler. The polymer composite films were cross-linked by irradiation with different integral doses. The results showed that the tensile strength (TS) increased continuously with radiation dose up to 10 kGy, beyond which declined. Meanwhile, TS exhibited increases with clay load ratio. However, the elongation at break (Eb) decreased continuously with dose and clay percentage within the developed composite films. Variation in structure and thermal properties were studied using X-ray diffractometion (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) techniques. The produced CMC/clay composites were implemented in removing copper (II) ions from a synthesized wastewater. The isotherm models and kinetic studies for the adsorption of Cu (II) onto CMC/clay were carried out. The results revealed that 0.1 g fabricated composite film irradiated at 10 kGy significantly removed copper (II) ions with adsorption capacity of 54.6 mg/g at optimum conditions: pH = 5, contact time = 300 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.R. Awual, I.M.M. Rahman, T. Yaita, M.A. Khaleque, M. Ferdows, pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem. Eng. J. 236, 100–109 (2014)

    Article  CAS  Google Scholar 

  2. Medicine I.O, Dietary reference intakes for Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc (The National Academies Press, Washington, DC, 2001)

    Google Scholar 

  3. C.G. VanGinkel, S. Gayton, The biodegradability and nontoxicity of carboxymethyl cellulose (DS 0.7) and intermediates. Environ. Toxicol. Chem. 15, 270–274 (1996)

    Article  CAS  Google Scholar 

  4. M.E. Mahmoud, A.E.H. Abdou, M.E. Sobhy, N.A. Fekry, Solid-solid crosslinking of carboxymethyl cellulose nanolayer on titanium oxide nanoparticles as a novel biocomposite for efficient removal of toxic heavy metals from water. Int. J. Biol. Macromol. 105, 1269–1278 (2017)

    Article  CAS  Google Scholar 

  5. L.Y. Wang, M.J. Wang, Removal of heavy metal ions by poly(vinyl alcohol) and Carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method. ACS Sustain. Chem. Eng. 4, 2830–2837 (2016)

    Article  CAS  Google Scholar 

  6. Y. Zhang, Y. Liu, X. Wang, Z. Sun, J. Ma, T. Wu, F. Xing, J. Gao, Porous grapheme oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohyd. Polym. 101, 392–400 (2014)

    Article  CAS  Google Scholar 

  7. S. Bang, Y.G. Ko, W.I. Kim, D. Cho, W.H. Park, O.H. Kwon, Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int. J. Biol Macromol. 105, 886–893 (2017)

    Article  CAS  Google Scholar 

  8. N.S.V. Capanema, A.A.P. Mansur, A.C. de Jesus, S.M. Carvalho, L.C. de Oliveira, H.S. Mansur, Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int. J. Biol. Macromol. 106, 1218–1234 (2018)

    Article  CAS  Google Scholar 

  9. M.N. Nadagouda, R.S. Varma, Synthesis of thermally stable Carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 8, 2762–2767 (2007)

    Article  CAS  Google Scholar 

  10. M.Q. Gutiérrez, I. Echeverría, M. Ihl, V. Bifani, A.N. Maur, Carboxymethylcellulose–montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydr. Polym. 87, 1495–1502 (2012)

    Article  Google Scholar 

  11. M.S. Nazir, M.H.M. Kassim, L. Mohapatra, M.A. Gilani, M.R. Raza, K. Majeed, Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In nanoclay reinforced polymer composites (Springer, Singapore, 2016), pp. 35–55

    Book  Google Scholar 

  12. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals. Water Res. 33, 2469–2479 (1999)

    Article  CAS  Google Scholar 

  13. X.L. Wu, S.T. Donglin Zhao, X.L. Yang, Impact of solution chemistry conditions on the sorption behavior of Cu(II) on Lin’an Montmorillonite. Desalination 269(1-3), 84–91 (2011)

    Article  CAS  Google Scholar 

  14. C.O. Ijagbemi, M.H. Baek, D.S. Kim, Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J. Hazard. Mater. 166, 538–546 (2009)

    Article  CAS  Google Scholar 

  15. S.Q. Zhang, W.G. Hou, Adsorption behavior of Pb(II) on Montmorillonite. Colloids Surf. A. 320(1-3), 92–97 (2008)

    Article  CAS  Google Scholar 

  16. Y. Bulut, G. Akcay, D. Elma, I.E. Serhatl, Synthesis of clay-based superabsorbent composite and its sorption capability. J. Hazard. Mater. 171, 717–723 (2009)

    Article  CAS  Google Scholar 

  17. S. Saber-Samandari, S. Saber-Samandari, M. Gazi, Cellulose-graft-polyacrylamide/ hydroxyapatite composite hydrogel with possible application in removal of Cu (II) ions. React. Funct. Polym. 73, 1523–1530 (2013)

    Article  CAS  Google Scholar 

  18. R. Ahmad, I. Hasan, L-cystein modified bentonite-cellulose nanocomposite (cellu/ cys-bent) for adsorption of Cu2+, Pb2+, and Cd2+ ions from aqueous solution. Sep. Sci. Technol. 51, 381–394 (2016)

    Article  CAS  Google Scholar 

  19. H. Soltani, A. Belmokhtar, F.Z. Zeggai, A. Benyoucef, S. Bousalem, K. Bachari, Copper(II) removal from aqueous solutions by PANI-clay hybrid material: Fabrication, characterization, adsorption and kinetics study. J. Inorg. Organomet. Polym. Mater. 29, 841–850 (2019)

    Article  CAS  Google Scholar 

  20. M.E. Khalifa, E.A. Abdelrahman, M.M. Hassanien, W.A. Ibrahim, Application of mesoporous silica nanoparticles Modifed with Dibenzoylmethane as a novel composite for Efcient removal of Cd(II), Hg(II), and Cu(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. 30, 2182–2196 (2020)

    Article  CAS  Google Scholar 

  21. K. Menad, A. Feddag, T. Juhna, Copper(II)–humic acid adsorption process using microporous-zeolite Na-X. J. Inorg. Organomet. Polym. Mater. 29, 1–16 (2019)

    Article  CAS  Google Scholar 

  22. N.A. Dahlana, A.K. Veeramachineni, S.J. Langford, J. Pushpamalar, Developing of a magnetite film of carboxymethyl cellulose grafted carboxymethyl polyvinyl alcohol (CMC-g-CMPVA) for copper removal. Carbohydrate Polymers 173, 619–630 (2017)

    Article  Google Scholar 

  23. B. Ôzkahraman, I. Acar, S. Emik, Removal of Cu2+ and Pb2+ ions using CMC based Thermoresponsive nanocomposite hydrogel. Clean (Weinh) 39(7), 658–664 (2011)

    Google Scholar 

  24. N. Reddy, Y. Yang, Citric acid cross-linking of starch films. Food Chem. 118(3), 702–711 (2010)

    Article  CAS  Google Scholar 

  25. R. Sothornvit, J.M. Krochta, Plasticizers in edible films and coatings, in Innovations in food packaging, ed. by J. H. Han, (Academic Press, London, 2005), pp. 403–433

    Chapter  Google Scholar 

  26. S. Rivero, L. Damonte, M.A. García, A. Pinotti, An insight into the role of glycerol in chitosan films. Food Biophy. 11(2), 117–127 (2016)

    Article  Google Scholar 

  27. M. Lavorgna, F. Piscitelli, P. Mangiacapra, G. Buonocore, Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr. Polym. 82, 291–298 (2010)

    Article  CAS  Google Scholar 

  28. H.L. Abd El-Mohdy, E.A. Hegazy, E.M. El-Nesr, M.A. El-Wahab, Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA) hydrogels. Arab J. Chem. 9, S1627 (2016)

    Article  CAS  Google Scholar 

  29. M.B. El-Arnaouty, A.M. Abdel Ghaffar, A.A. Abdel Baky, S.A. Shama, Radiation synthesis of hydrogels based on carboxymethyl cellulose and its application in removal of pollutants from wastewater. J. Vinyl Addit 25(S1), E35–E43 (2017)

    Article  Google Scholar 

  30. F. Veglio, F. Beolchini, A. Gasbarro, Biosorption of toxic metals: An equilibrium study using free cells of Arthrobacter sp. Process Biochem. 32(2), 99–105 (1997)

    Article  CAS  Google Scholar 

  31. N.M. Ismail, A. Bono, A.C.R. Valintinus, S. Nilus, L.M. Chng, Optimisation of reaction conditions for preparing carboxymethyl cellulose. J. Appl. Sci. 21, 2530–2536 (2010)

    Article  Google Scholar 

  32. L. Wu, X. Lin, X. Zhou, X. Luo, Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum. Appl. Surf. Sci. 384, 466–479 (2016)

    Article  CAS  Google Scholar 

  33. C.M. Zvinowanda, J.O. Okonkwo, P.N. Shabalala, N.M. Agyei, A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech. 6, 425–434 (2009)

    Article  CAS  Google Scholar 

  34. C. Iosu, S.A. Odoemelam, Studies on adsorbent dosage, particle sizes and pH constraints on biosorption of Pb (II) and Cd (II) ions from aqueous solution using modified and unmodified Crasstrotrea Gasar. Int Arch Appl Sci Technol 1, 62–68 (2010)

    Google Scholar 

  35. P.A. Brown, S.A. Gill, S.T. Allen, Metal removal from wastewater using peat. Water Res. 34, 3907–3916 (2000)

    Article  CAS  Google Scholar 

  36. N.M. Mahmoodi, R. Salehi, M. Arami, H. Bahrami, Dye removal from colored textile wastewater using chitosan in binary systems. Desalin 267, 64–72 (2011)

    Article  CAS  Google Scholar 

  37. M.R. Samarghandi, M. Hadi, S. Moayedi, F.B. Askari, Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iran. J. Environ. Health Sci. Eng. 6(4), 285–294 (2009)

    CAS  Google Scholar 

  38. S. Aber, A. Khataee, M. Sheydaei, Optimization of activated carbon fiber preparation from Kenaf using K2HPO4 as chemical activator for adsorption of phenolic compounds. Bioresour. Technol. 100, 6586–6591 (2009)

    Article  CAS  Google Scholar 

  39. M. Zulfiqar, S. Chowdhury, A. Omar, Hydrothermal synthesis of multiwalled TiO2 nanotubes and its photocatalytic activities for Orange II removal. Sep. Sci. Technol. 53, 1412–1422 (2018)

    Article  CAS  Google Scholar 

  40. Y.S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59, 171–177 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser H. Gad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gad, Y.H., Ali, H.E. & Hegazy, ES.A. Radiation-Induced Improving Mechanical and Thermal Properties of Carboxymethyl Cellulose/Clay Composite for Application in Removal of Copper(II) Ions from Wastewater. J Inorg Organomet Polym 31, 2083–2094 (2021). https://doi.org/10.1007/s10904-020-01850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01850-w

Keywords

Navigation