Skip to main content
Log in

Ni-MOF/PANI-Derived CN-Doped NiO Nanocomposites for High Sensitive Nonenzymic Electrochemical Detection

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Flower-like carbon and nitrogen atomic doped NiO nanocomposite (CN-NiO) has been derived from the Ni-MOF/polyaniline (PANI) calcined at high temperature, which is used to construct a nonenzymic electrochemical sensor by coating it on glassy carbon electrode (GCE). The results of electrochemical tests show that the CN-NiO@GCE has the linear dependency of current response on glucose concentration ranged from 5.0 × 10–7 to 3 × 10–3 mol/L. It has higher sensitivity (1144 μA/mM/cm2) and lower detection limit (5.0 × 10–7 mol/L). In addition, the resulting CN-NiO@GCE shows long-term stability. At the same time, this electrode has good selectivity, with no electrochemical response to the interfering concomitant such as urea, nifedipine, ascorbic acid and dopamine. It indicates that Ni-MOF-derived CN-doped NiO nanocomposites are good electrochemical sensing materials, which find potential application to fabricate nonenzymic electrochemical recognition and detection devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009)

    Article  CAS  Google Scholar 

  2. J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  CAS  Google Scholar 

  3. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal organic frameworks. Science 300, 1127–1129 (2003)

    Article  CAS  Google Scholar 

  4. J.Y. An, S.J. Geib, N.L. Rosi, Cation-triggered drug release from a porous zinc-adeninate metal–organic framework. J. Am. Chem. Soc. 131, 8376–8377 (2009)

    Article  CAS  Google Scholar 

  5. R.C. Huxford, J. Della Rocca, W.B. Lin, Metal-organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 14, 262–268 (2010)

    Article  CAS  Google Scholar 

  6. S.T. Meek, J.A. Greathouse, M.D. Allendorf, Metal–organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011)

    Article  CAS  Google Scholar 

  7. B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008)

    Article  CAS  Google Scholar 

  8. A. Banerjee, U. Singh, V. Aravindan, M. Srinivasan, S. Ogale, Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy 2, 1158–1163 (2013)

    Article  CAS  Google Scholar 

  9. S. Premlatha, P. Sivasakthi, G.N.K. Ramesh Bapu, Electrodeposition of a 3D hierarchical porous flower-like cobalt–MWCNT nanocomposite electrode for non-enzymatic glucose sensing. RSC Adv. 5, 74374–74380 (2015)

    Article  CAS  Google Scholar 

  10. C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473–4491 (2013)

    Article  CAS  Google Scholar 

  11. M.S. Steiner, A. Duerkop, O.S. Wolfbeis, Optical methods for sensing glucose. Chem. Soc. Rev. 40, 4805–4839 (2011)

    Article  CAS  Google Scholar 

  12. K. Lange, B.E. Rapp, M. Rapp, Surface acoustic wave biosensors: a review. Anal. Bioanal. Chem. 391, 1509–1519 (2008)

    Article  Google Scholar 

  13. P.R. Miller, S.A. Skoog, T.L. Edwards, D.R. Wheeler, X. Xiao, S.M. Brozik, R. Polsky, R.J. Narayan, Hollow microneedle-based sensor for multiplexed transdermal electrochemical sensing. J. Vis. Exp. 64, e4067 (2012)

    Google Scholar 

  14. K. Billingsley, M.K. Balaconis, J.M. Dubach, N. Zhang, E. Lim, K.P. Francis, H.A. Clark, Fluorescent nano-optodes for glucose detection. Anal. Chem. 82, 3707–3713 (2010)

    Article  CAS  Google Scholar 

  15. Y. Huang, X. Dong, Y. Shi, C.M. Li, L.J. Li, P. Chen, Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2, 1485–1488 (2010)

    Article  CAS  Google Scholar 

  16. J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2010)

    Article  Google Scholar 

  17. S. Ci, T. Huang, Z. Wen, S. Cui, S. Mao, D.A. Steeber, J. Chen, Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens. Bioelectron. 54, 251–257 (2014)

    Article  CAS  Google Scholar 

  18. G.G. Guilbault, G.J. Lubrano, An enzyme electrode for the amperometric determination of glucose. Anal. Chim. Acta 64, 439–455 (1973)

    Article  CAS  Google Scholar 

  19. Z.G. Zhu, L. Garcia-Gancedo, A.J. Flewitt, H.Q. Xie, F. Moussy, W.I. Milne, A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12, 5996–6022 (2012)

    Article  Google Scholar 

  20. R. Devasenathipathy, C. Karuppiah, S.M. Chen, S. Palanisamy, B.S. Lou, M. Ajmal Ali, F.M.A. Al-Hemaid, A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine. RSC Adv. 5, 26762–26768 (2015)

    Article  CAS  Google Scholar 

  21. L.C. Jiang, W.D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25, 1402–1407 (2010)

    Article  CAS  Google Scholar 

  22. H. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 Nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132, 7472–7477 (2010)

    Article  CAS  Google Scholar 

  23. Y. Wang, Q.S. Zhu, H.G. Zhang, Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template free process. Chem. Commun. 41, 5231–5233 (2005)

    Article  Google Scholar 

  24. B. Zhao, X.K. Ke, J.H. Bao, C.L. Wang, L. Dong, Y.W. Chen, H.L. Chen, Synthesis of flower-like NiO and effects of morphology on its catalytic properties. J. Phys. Chem. C 113, 14440–14447 (2009)

    Article  CAS  Google Scholar 

  25. Y. Zhang, F.G. Xu, Y.J. Sun, Y. Shi, Z.W. Wen, Z. Li, Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J. Mater. Chem. 21, 16949–16954 (2011)

    Article  CAS  Google Scholar 

  26. W. Zuo, G. Yu, Z. Dong, A MOF-derived nickel based N-doped mesoporous carbon catalyst with high catalytic activity for the reduction of nitroarenes. RSC Adv. 6, 11749 (2016). https://doi.org/10.1039/C5RA23082A

    Article  CAS  Google Scholar 

  27. S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 18, 1602733 (2017). https://doi.org/10.1002/aenm.201602733

    Article  CAS  Google Scholar 

  28. Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang, H. Xue, Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J. Mater. Chem. A 4, 8 (2016). https://doi.org/10.1039/C6TA08331E

    Article  CAS  Google Scholar 

  29. P. Du, Y. Dong, C. Liu, W. Wei, D. Liu, P. Liu, Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. J. Colloid Interfaces Sci. 518, 57–68 (2018)

    Article  CAS  Google Scholar 

  30. Z. Lv, Q. Fan, Y. Xie, Z. Chen, A. Alsaedi, T. Hayat, X. Wang, C. Chen, MOFs-derived magnetic chestnut shell-like hollow sphere NiO/Ni@C composites and their removal performance for arsenic(V). Chem. Eng. J. 362, 413–421 (2019)

    Article  CAS  Google Scholar 

  31. S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 24, 2037–2041 (2012)

    Article  CAS  Google Scholar 

  32. J. Shen, Q. Wang, K. Zhang, S. Wang, L. Li, S. Dong, S. Zhao, J. Chen, R. Sun, Y. Wang, Z. Jian, W. Zhang, Flexible carbon cloth based solid-state supercapacitor from hierarchical holothurian-morphological NiCo2O4@NiMoO4/PANI. Electrochim. Acta 320, 134578 (2019)

    Article  CAS  Google Scholar 

  33. T. Choi, S.H. Kim, C.W. Lee, H. Kim, S.K. Choi, S.H. Kim, E. Kim, J. Park, H. Kim, Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens. Bioelectron 63, 325–330 (2015)

    Article  CAS  Google Scholar 

  34. Y. Jiang, S. Yu, J. Li, L. Jia, C. Wang, Improvement of sensitive Ni(OH)2 non-enzymatic glucose sensor based on carbon nanotube/polyimide membrane. Carbon 63, 367–375 (2013)

    Article  CAS  Google Scholar 

  35. X. Niu, M. Lan, H. Zhao, C. Chen, Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal. Chem. 85, 3561–3569 (2013)

    Article  CAS  Google Scholar 

  36. Q. Wang, S. Wang, J. Shang, S. Qiu, W. Zhang, X. Wu, J. Li, W. Chen, X. Wang, Enhanced electronic communication and electrochemical sensitivity benefiting from the cooperation of quadruple hydrogen bonding and π−π interactions in graphene/multi-walled carbon nanotube hybrids. ACS Appl. Mater. Interfaces 9, 6255–6264 (2017)

    Article  CAS  Google Scholar 

  37. Q. Sheng, K. Luo, J. Zheng, H. Zhang, Enzymatically induced formation of neodymium hexacyanoferrate nanoparticles on the glucose oxidase/chitosan modified glass carbon electrode for the detection of glucose. Biosens. Bioelectron 24, 430–432 (2008)

    Article  Google Scholar 

  38. H. Liu, X. Wu, B. Yang, Z. Li, L. Lei, X. Zhang, Three-dimensional porous NiO nanosheets vertically grown on graphite disks for enhanced performance non-enzymatic glucose sensor. Electrochim. Acta 174, 745–752 (2015)

    Article  CAS  Google Scholar 

  39. P.K. Kannan, C.S. Rout, High performance non-enzymatic glucose sensor based on one-step electrodeposited nickel sulfide. Chem. Eur. J. 21, 9355–9359 (2015)

    Article  CAS  Google Scholar 

  40. J. Yang, M. Cho, C. Pang, Y. Lee, Highly sensitive non-enzymatic glucose sensor based on over-oxidized polypyrrole nanowires modified with Ni(OH)2 nanoflakes. Sens. Actuators B 211, 93–101 (2015)

    Article  CAS  Google Scholar 

  41. L. Wang, Y. Tang, L. Wang, H. Zhu, X. Meng, Y. Chen, Y. Sun, X.J. Yang, P. Wan, Fast conversion of redox couple on Ni(OH)2/C nanocomposite electrode for high-performance non-enzymatic glucose sensor. J. Solid State Electrochem. 19, 851–860 (2015)

    Article  CAS  Google Scholar 

  42. P. Lu, Y. Lei, S. Lu, Q. Wang, Q. Liu, Three-dimensional roselike α-Ni(OH)2 assembled from nanosheet building blocks for non-enzymatic glucose detection. Anal. Chim. Acta 880, 42–51 (2015)

    Article  CAS  Google Scholar 

  43. P. Lu, Q. Liu, Y. Xiong, Q. Wang, Y. Lei, S. Lu, L. Lu, L. Yao, Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors. Electrochim. Acta 168, 148–156 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledged the financial support from the National Natural Science Foundation of China (Grant No. 21772152); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry; the Natural Science Foundation of Shaanxi Province (No. 2019JM-270).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiguan Wang or Sumin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Wang, Q. & Wang, S. Ni-MOF/PANI-Derived CN-Doped NiO Nanocomposites for High Sensitive Nonenzymic Electrochemical Detection. J Inorg Organomet Polym 31, 865–874 (2021). https://doi.org/10.1007/s10904-020-01767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01767-4

Keywords

Navigation