Skip to main content
Log in

Biodistribution and Pharmacokinetic Study of Gemcitabine Hydrochloride Loaded Biocompatible Iron-Based Metal Organic Framework

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study was designed to improve bioavailability and therapeutic efficacy of Gemcitabine (GEM) with reduced side effects using MOF MIL-100 as cargo. MIL-100 was synthesized, and characterized by microscopic and spectroscopic techniques. Impregnation approach was used for encapsulation of GEM inside the MIL-100 (i.e., MIL100-GEM). In-vitro release studies of MIL100-GEM was carried out in different media (PBS, deionized water and Tris buffer, pH = 7.4, 9.5 mM) to find out the drug release mechanism. Cytotoxicity and apoptosis assays were evaluated using MTT and fluorescence-activated cell sorting (FACS) assay in MiaPaCa-2 pancreatic cancer cell lines. Biocompatibility, pharmacokinetic and biodistribution studies of MIL100-GEM were assessed in Wistar rats. MIL100-GEM exhibited high encapsulation efficiency (78.6 ± 0.5%) and maximum payload (23.6 ± 1%). PXRD confirmed crystallinity of MIL-100, and did not show any effect on its structural integrity after encapsulation of GEM. In-vitro release studies revealed a biphasic release pattern in PBS buffer which followed Higuchi diffusion kinetics. In-vitro cytotoxicity studies showed low IC50 value for MIL100-GEM (3.50 ± 1.33 µg/ml) compared to GEM (6.22 ± 1.55 µg/ml), ensuring adequate cell proliferation after 72 h. Hemolysis study showed that MIL100-GEM (14.54 ± 1.3%) had better biocompatibility than the native GEM (30.52 ± 1.67%). Furthermore, pharmacokinetic and biodistribution studies exhibited ∼17-fold increased bioavailability, ∼20-fold increased distribution half-life and ∼15-folds elimination half-life of GEM with less accumulation of drug in the kidneys. MIL-100 MOF was synthesized and characterized to address the metabolic degradation issue of GEM. Biocompatible, MIL100-GEM demonstrated efficient drug (GEM) loading and enhanced cytotoxic activity in pancreatic cancer cell line with augmented bioavailability, providing MIL-100 a promising drug cargo.

Graphic Abstract

MIL-100 was synthesized using a microwave-assisted method. The anticancer drug Gemcitabine Hydrochloride (GEM) was loaded into the MIL-100 using the impregnation method. Encapsulation protected the drug from its metabolic inactivation to enhance bioavailability in target organs and reduce side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Haley, E. Frenkel, Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 26(1), 57–64 (2008)

    CAS  PubMed  Google Scholar 

  2. K. Tsuchida, Drug delivery systems for cancer treatment, in Encyclopedia of cancer, ed. by M. Schwab (Springer, Berlin, 2011), pp. 1160–1162

    Google Scholar 

  3. C. Bornmann, R. Graeser, N. Esser et al., A new liposomal formulation of Gemcitabine is active in an orthotopic mouse model of pancreatic cancer accessible to bioluminescence imaging. Cancer Chemother. Pharmacol. 61(3), 395–405 (2008)

    CAS  PubMed  Google Scholar 

  4. L.W. Hertel, G.B. Boder, J.S. Kroin et al., Evaluation of the antitumor activity of gemcitabine (2′,2′-difluoro-2′-deoxycytidine). Cancer Res. 50(14), 4417–4422 (1990)

    CAS  PubMed  Google Scholar 

  5. W. Plunkett, P. Huang, V. Gandhi, Preclinical characteristics of gemcitabine. Anticancer Drugs 6, 7–13 (1995)

    CAS  PubMed  Google Scholar 

  6. H.A. Burris III, M.J. Moore, J. Andersen et al., Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15(6), 2403–2413 (1997)

    CAS  PubMed  Google Scholar 

  7. J.R. Mackey, R.S. Mani, M. Selner et al., Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res. 58(19), 4349–4357 (1998)

    CAS  PubMed  Google Scholar 

  8. M. Pastor-Anglada, M. Molina-Arcas, F.J. Casado, B. Bellosillo, D. Colomer, J. Gil, Nucleoside transporters in chronic lymphocytic leukaemia. Leukemia 18(3), 385–393 (2004)

    CAS  PubMed  Google Scholar 

  9. H. Gourdeau, M.L. Clarke, F. Ouellet et al., Mechanisms of uptake and resistance to troxacitabine, a novel deoxycytidine nucleoside analogue, in human leukemic and solid tumor cell lines. Cancer Res. 61(19), 7217–7224 (2001)

    CAS  PubMed  Google Scholar 

  10. J.L. Abbruzzese, R. Grunewald, E.A. Weeks et al., A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J. Clin Oncol. 9(3), 491–498 (1991)

    CAS  PubMed  Google Scholar 

  11. J.M. Reid, W. Qu, S.L. Safgren et al., Phase I trial and pharmacokinetics of gemcitabine in children with advanced solid tumors. J. Clin. Oncol. 22(12), 2445–2451 (2004)

    CAS  PubMed  Google Scholar 

  12. R. Moog, A.M. Burger, M. Brandl et al., Change in pharmacokinetic and pharmacodynamic behavior of gemcitabine in human tumor xenografts upon entrapment in vesicular phospholipid gels. Cancer Chemother. Pharmacol. 49(5), 356–366 (2002)

    CAS  PubMed  Google Scholar 

  13. M.L. Immordino, P. Brusa, F. Rocco, S. Arpicco, M. Ceruti, L. Cattel, Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. J. Control. Rel. 100(3), 331–346 (2004)

    CAS  Google Scholar 

  14. K. Derakhshandeh, S. Fathi, Role of chitosan nanoparticles in the oral absorption of Gemcitabine. Int. J. Pharm. 437(1–2), 172–177 (2012)

    CAS  PubMed  Google Scholar 

  15. J. Yang, H. Lee, W. Hyung, S.B. Park, S. Haam, Magnetic PECA nanoparticles as drug carriers for targeted delivery: synthesis and release characteristics. J. Microencapsul. 23(2), 203–212 (2006)

    CAS  PubMed  Google Scholar 

  16. J. Wang, X. Zhang, Y. Cen, X. Lin, Q. Wu, Antitumor gemcitabine conjugated micelles from amphiphilic comb-like random copolymers. Colloids Surf. B Biointerfaces 146(Supplement C), 707–715 (2016)

    CAS  PubMed  Google Scholar 

  17. C.R. Patra, R. Bhattacharya, E. Wang et al., Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 68(6), 1970–1978 (2008). https://doi.org/10.1158/0008-5472.CAN-1907-6102

    Article  CAS  PubMed  Google Scholar 

  18. Y. Fang, F. Du, Y. Xu et al., Enhanced cellular uptake and intracellular drug controlled release of VESylated gemcitabine prodrug nanocapsules. Colloids Surf. B Biointerfaces 128(Supplement C), 357–362 (2015)

    CAS  PubMed  Google Scholar 

  19. S. Bersani, M. Vila-Caballer, C. Brazzale, M. Barattin, S. Salmaso, pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine) decorated liposomes for the delivery of gemcitabine to cancer cells. Eur J Pharm Biopharm 88(3), 670–682 (2014). https://doi.org/10.1016/j.ejpb.2014.1008.1005

    Article  CAS  PubMed  Google Scholar 

  20. S. Arpicco, C. Lerda, E. Dalla Pozza et al., Hyaluronic acid-coated liposomes for active targeting of gemcitabine. Eur J Pharm Biopharm. 85(3 Pt A), 373–380 (2013). https://doi.org/10.1016/j.ejpb.2013.1006.1003

    Article  CAS  PubMed  Google Scholar 

  21. L.S. Huang, C.X. Wang, Z.L. Chen, J. Wan, X.Q. Yan, G. Duan, Preparation of gemcitabine polybutylcyanoacrylate nanoparticles. Nan Fang Yi Ke Da Xue Xue Bao. 27(11), 1653–1656 (2007)

    CAS  PubMed  Google Scholar 

  22. P. Horcajada, T. Chalati, C. Serre et al., Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 9(2), 172–178 (2010). https://doi.org/10.1038/nmat2608

    Article  CAS  PubMed  Google Scholar 

  23. D. Laha, K. Pal, A.R. Chowdhuri et al., Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapy in in vitro and in vivo systems. New J. Chem. 43(1), 217–229 (2019)

    CAS  Google Scholar 

  24. Q. Gao, J. Xu, X.-H. Bu, Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord. Chem. Rev. 378, 17–31 (2019)

    CAS  Google Scholar 

  25. J.-D. Xiao, H.-L. Jiang, Metal–organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 52(2), 356–366 (2019)

    CAS  PubMed  Google Scholar 

  26. R.C. Huxford, J. Della Rocca, W. Lin, Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 14(2), 262–268 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Giménez-Marqués, T. Hidalgo, C. Serre, P. Horcajada, Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev. 307, 342–360 (2016)

    Google Scholar 

  28. G. Férey, C. Mellot-Draznieks, C. Serre et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743), 2040–2042 (2005)

    Google Scholar 

  29. V. Agostoni, P. Horcajada, M. Noiray et al., A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci. Rep. 5, 7925 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. M.R. Di Nunzio, V. Agostoni, B. Cohen, R. Gref, A. Douhal, A “ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J. Med. Chem. 57(2), 411–420 (2014)

    PubMed  Google Scholar 

  31. V. Rodriguez-Ruiz, A. Maksimenko, R. Anand et al., Efficient “green” encapsulation of a highly hydrophilic anticancer drug in metal-organic framework nanoparticles. J. Drug. Target. 23(7–8), 759–767 (2015)

    CAS  PubMed  Google Scholar 

  32. W.J. Trickler, J. Khurana, A.A. Nagvekar, A.K. Dash, Chitosan and glyceryl monooleate nanostructures containing gemcitabine: potential delivery system for pancreatic cancer treatment. AAPS PharmSciTech. 11(1), 392–401 (2010). https://doi.org/10.1208/s12249-12010-19393-12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. V. Agostoni, R. Anand, S. Monti et al., Impact of phosphorylation on the encapsulation of nucleoside analogues within porous iron(iii) metal–organic framework MIL-100(Fe) nanoparticles. J. Mater. Chem. B 1(34), 4231–4242 (2013)

    CAS  PubMed  Google Scholar 

  34. T. Chalati, P. Horcajada, P. Couvreur et al., Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine (Lond). 6(10), 1683–1695 (2011). https://doi.org/10.2217/nnm.1611.1669

    Article  CAS  PubMed  Google Scholar 

  35. V. Agostoni, T. Chalati, P. Horcajada et al., Towards an improved anti-HIV activity of NRTI via metal–organic frameworks nanoparticles. Adv. Healthc. Mater. 2(12), 1630–1637 (2013). https://doi.org/10.1002/adhm.201200454

    Article  CAS  PubMed  Google Scholar 

  36. P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. Engl. 45(36), 5974–5978 (2006)

    CAS  PubMed  Google Scholar 

  37. C. He, D. Liu, W. Lin, Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 115(19), 11079–11108 (2015)

    CAS  PubMed  Google Scholar 

  38. M.M. Yallapu, M. Jaggi, S.C. Chauhan, beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces 79(1), 113–125 (2010)

    CAS  PubMed  Google Scholar 

  39. R.D. Dubey, N. Alam, A. Saneja et al., Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine. Int. J. Pharm. 492(1), 80–91 (2015)

    CAS  PubMed  Google Scholar 

  40. J.H. Beumer, J.L. Eiseman, R.A. Parise, E. Joseph, J.M. Covey, M.J. Egorin, Modulation of gemcitabine (2′,2′-difluoro-2′-deoxycytidine) pharmacokinetics, metabolism, and bioavailability in mice by 3,4,5,6-tetrahydrouridine. Clin. Cancer Res. 14(11), 3529–3535 (2008)

    CAS  PubMed  Google Scholar 

  41. K. Kattel, G. Mondal, F. Lin, V. Kumar, R.I. Mahato, Biodistribution of self-assembling polymer–gemcitabine conjugate after systemic administration into orthotopic pancreatic tumor bearing mice. Mol. Pharm. 14(5), 1365–1372 (2017)

    CAS  PubMed  Google Scholar 

  42. A. Jain, K. Thakur, P. Kush, U.K. Jain, Docetaxel loaded chitosan nanoparticles: formulation, characterization and cytotoxicity studies. Int. J. Biol. Macromol. 69, 546–553 (2014)

    CAS  PubMed  Google Scholar 

  43. N.A. Peppas, Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60(4), 110–111 (1985)

    CAS  PubMed  Google Scholar 

  44. S. Mori-Iwamoto, Y. Kuramitsu, S. Ryozawa et al., A proteomic profiling of gemcitabine resistance in pancreatic cancer cell lines. Mol. Med. Rep. 1(3), 429–434 (2008)

    CAS  PubMed  Google Scholar 

  45. S.L. Loke, C.A. Stein, X.H. Zhang et al., Characterization of oligonucleotide transport into living cells. Proc. Natl Acad. Sci. U.S.A. 86(10), 3474–3478 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Yuan, L. Feng, K. Wang et al., Stable metal-organic frameworks: design, synthesis, and applications. Adv Mater. 30(37), e1704303 (2018)

    PubMed  Google Scholar 

  47. P. Brusa, M.L. Immordino, F. Rocco, L. Cattel, Antitumor activity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. Anticancer Res. 27(1A), 195–199 (2007)

    CAS  PubMed  Google Scholar 

  48. P. Horcajada, C. Serre, M. Vallet-Regi, M. Sebban, F. Taulelle, G. Ferey, Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. Engl. 45(36), 5974–5978 (2006)

    CAS  PubMed  Google Scholar 

  49. P. Horcajada, R. Gref, T. Baati et al., Metal–organic frameworks in biomedicine. Chem. Rev. 112(2), 1232–1268 (2012)

    CAS  Google Scholar 

  50. L.H. Reddy, P. Couvreur, Novel approaches to deliver gemcitabine to cancers. Curr. Pharm. Des. 14(11), 1124–1137 (2008)

    CAS  PubMed  Google Scholar 

  51. M. Shen, H. Cai, X. Wang et al., Facile one-pot preparation, surface functionalization, and toxicity assay of APTS-coated iron oxide nanoparticles. Nanotechnology 23(10), 105601 (2012)

    PubMed  Google Scholar 

  52. D. Chen, Q. Tang, X. Li et al., Biocompatibility of magnetic Fe(3)O(4) nanoparticles and their cytotoxic effect on MCF-7 cells. Int. J. Nanomed. 7, 4973–4982 (2012)

    CAS  Google Scholar 

  53. M.S. Ewer, S.M. Ewer, Cardiotoxicity of anticancer treatments. Nat. Rev. Cardiol. 12(9), 547–558 (2015)

    CAS  Google Scholar 

  54. A. Albini, G. Pennesi, F. Donatelli, R. Cammarota, S. De Flora, D.M. Noonan, Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J. Natl Cancer Inst. 102(1), 14–25 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. L.H. Reddy, H. Khoury, A. Paci et al., Squalenoylation favorably modifies the in vivo pharmacokinetics and biodistribution of gemcitabine in mice. Drug Metab. Dispos 36(8), 1570–1577 (2008)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ms. Preeti Kush, Jitender Madan, and Upendra Kumar Jain acknowledge the management of the Chandigarh group of colleges, Mohali (Punjab), India & IKG Punjab Technical University, Kapurthala (Punjab), India for providing the necessary infrastructure and laboratory facilities. Akash Deep and Parveen Kumar thank the Director, CSIR-CSIO, Chandigarh for providing the necessary infrastructure and the Department of Science and Technology, India for providing a research grant under the INSPIRE Faculty award. KHK also acknowledges the support of the R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (Grant No: 2018001850001) as well as a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning (Grant No. 2016R1E1A1A01940995).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Preeti Kush or Ki-Hyun Kim.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kush, P., Bajaj, T., Kaur, M. et al. Biodistribution and Pharmacokinetic Study of Gemcitabine Hydrochloride Loaded Biocompatible Iron-Based Metal Organic Framework. J Inorg Organomet Polym 30, 2827–2841 (2020). https://doi.org/10.1007/s10904-019-01417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01417-4

Keywords

Navigation