Skip to main content
Log in

Physical Properties of Sn-Doped PbSe Nanostructures as Photovoltaic Application

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work presents co-precipitation synthesis of tin (Sn)-doped lead selenide (PbSe) nanostructures and their physical properties as a solar cell application. The primary characterization of the obtained samples using X-ray diffraction (XRD) patterns shows the formation of polycrystalline cubic PbSe phase and adding Sn concentration decreased and increased the crystallite size and induced strain, respectively. Morphological studies indicate the formation of flake-like PbSe nanostructures, with Sn atoms decreasing their mean diameter. Optical studies show optical band gap at the proper range for absorbing solar rays as photovoltaic applications. Solar cell devices fabricated from the Sn-doped PbSe nanostructures shows an efficiency (ƞ) of 0.40% for a sample with highest atomic percentage (at%) of Sn. This increasing in efficacy is attributed to various physical features of these structures such as induced strain on the crystalline lattice, a decrease in size, and a shift in the optical energy band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Hou, O. Inganäs, R.H. Friend, F. Gao, Nat. Mater. 17, 119 (2018)

    CAS  Google Scholar 

  2. T. Miyasaka, Bull. Chem. Soc. Jpn. 91, 1058 (2018)

    CAS  Google Scholar 

  3. M.A. Baghchesara, M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, J. Mater. Sci. 28, 4475 (2017)

    CAS  Google Scholar 

  4. M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, F. Niknia, M.R. Mahmoudian, M. Sookhakian, Mater. Chem. Phys. 195, 187 (2017)

    CAS  Google Scholar 

  5. F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Sol. Energy Mater. Sol. Cells 154, 49 (2016)

    CAS  Google Scholar 

  6. V. Badescu, M. Paulescu, Physics of Nanostructured Solar Cells (Nova Science Publishers, Hauppauge, 2010)

    Google Scholar 

  7. G. Chen, Z. Ning, H. Agren, Nanostructured Solar Cells (MDPI AG, Basel, 2018)

    Google Scholar 

  8. P. Würfel, Physics of Solar Cells: From Principles to New Concepts (Wiley, Hoboken, 2008)

    Google Scholar 

  9. A.M. Jawaid, D.J. Asunskis, P.T. Snee, ACS Nano 5, 6465 (2011)

    CAS  PubMed  Google Scholar 

  10. Y. Zhang, X. Ke, C. Chen, J. Yang, P.R.C. Kent, Phys. Rev. B 80, 024304 (2009)

    Google Scholar 

  11. Z. Chen, Z. Zhang, J. Yang et al., J. Mater. Chem. C. 6, 9861 (2018)

    CAS  Google Scholar 

  12. W. Feng, J. Song, Y. Ren et al., Physica E 102, 153 (2018)

    CAS  Google Scholar 

  13. R.L.Z. Hoye, B. Ehrler, M.L. Böhm et al., Adv. Energy Mater. 4, 1301544 (2014)

    PubMed  PubMed Central  Google Scholar 

  14. C. Gayner, R. Sharma, M.K. Das, K.K. Kar, J. Alloys Compd. 699, 679 (2017)

    CAS  Google Scholar 

  15. M. Shandalov, Y. Golan, Eur. Phys. J. 24, 13 (2003)

    CAS  Google Scholar 

  16. T.S. Shyju, S. Anandhi, R. Sivakumar, S.K. Garg, R. Gopalakrishnan, J. Cryst. Growth 353, 47 (2012)

    CAS  Google Scholar 

  17. E. Díaz-Torres, M. Ortega-López, Y. Matsumoto, J. Santoyo-Salazar, Mater. Res. Bull. 80, 96 (2016)

    Google Scholar 

  18. A. Ghorban Shiravizadeh, S.M. Elahi, S.A. Sebt, R. Yousefi, J. Appl. Phys. 123, 083102 (2018)

    Google Scholar 

  19. E.B. Hostetler, K.-J. Kim, R.P. Oleksak et al., Mater. Lett. 128, 54 (2014)

    CAS  Google Scholar 

  20. S. Hoomi, R. Yousefi, F. Jamali-Sheini et al., Funct. Mater. Lett. 08, 1550063 (2015)

    CAS  Google Scholar 

  21. Y.X. Ren, T.J. Dai, B. He, X.Z. Liu, Mater. Lett. 236, 194 (2019)

    CAS  Google Scholar 

  22. L. Han, J. Liu, N. Yu et al., Nanoscale 7, 2461 (2015)

    CAS  PubMed  Google Scholar 

  23. L. Han, D.M. Balazs, A.G. Shulga, M. Abdu-Aguye, W. Ma, M.A. Loi, Adv. Electron. Mater. 4, 1700580 (2018)

    Google Scholar 

  24. H. Wei, S. Chen, X. Ren et al., CrystEngComm 14, 7408 (2012)

    CAS  Google Scholar 

  25. M.R. Khanlary, E. Salavati, Adv. Condens. Matter Phys. 2012, 4 (2012)

    Google Scholar 

  26. J. Zhang, C. Liu, J. Heo, J. Non-Cryst. Solids 431, 93 (2016)

    CAS  Google Scholar 

  27. M. Cheraghizade, F. Jamali-Sheini, P. Shabani, Mater. Sci. Semicond. Process. 90, 120 (2019)

    CAS  Google Scholar 

  28. M. Cheraghizade, F. Jamali-Sheini, P. Shabani, J. Mater. Sci. 30, 11123 (2019)

    CAS  Google Scholar 

  29. P.D.F. ICDD, Powder Diffraction File (Newtown Square, Pennsylvania, 1997)

    Google Scholar 

  30. R.D. Shannon, Acta Crystallogr. Sect. A. 32, 751 (1976)

    Google Scholar 

  31. M. Pezhman, C. Mohsen, Y. Ramin, Mater. Res. Express 6, 025051 (2019)

    Google Scholar 

  32. S. Guha, V.J. Leppert, S.H. Risbud, I. Kang, Solid State Commun. 105, 695 (1998)

    CAS  Google Scholar 

  33. F. Jamali-Sheini, M. Cheraghizade, R. Yousefi, Appl. Surf. Sci. 443, 345 (2018)

    CAS  Google Scholar 

  34. F. Jamali-Sheini, R. Yousefi, N. Ali Bakr, M. Cheraghizade, M. Sookhakian, N.M. Huang, Mater. Sci. Semicond. Process. 32, 172 (2015)

    CAS  Google Scholar 

  35. M. Cheraghizade, J. Optoelectron. Nanostruct. 4, 1 (2019)

    Google Scholar 

  36. F. Monjezi, F. Jamali-Sheini, R. Yousefi, J. Alloys Compd. 780, 626 (2019)

    CAS  Google Scholar 

  37. F. Monjezi, F. Jamali-Sheini, R. Yousefi, Sol. Energy 171, 508 (2018)

    CAS  Google Scholar 

  38. M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, Appl. Phys. A 123, 390 (2017)

    Google Scholar 

  39. F. Jamali-Sheini, M. Cheraghizade, F. Niknia, R. Yousefi, MRS Commun. 6, 421 (2016)

    CAS  Google Scholar 

  40. D. Yun, W. Feng, H. Wu, K. Yoshino, Sol. Energy Mater. Sol. Cells 93, 1208 (2009)

    CAS  Google Scholar 

  41. J. Zhang, J. Gao, C.P. Church et al., Nano Lett. 14, 6010 (2014)

    CAS  PubMed  Google Scholar 

  42. Z. Zhang, Z. Chen, J. Zhang et al., Adv. Energy Mater. 7, 1601773 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Moarrefi-Romeileh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiaei, I., Moarrefi-Romeileh, M. Physical Properties of Sn-Doped PbSe Nanostructures as Photovoltaic Application. J Inorg Organomet Polym 30, 986–993 (2020). https://doi.org/10.1007/s10904-019-01261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01261-6

Keywords

Navigation