Skip to main content

Advertisement

Log in

Tailoring of Functionally Graded Mullite: La2O3 Coatings by Transferred Arc Plasma for Thermal Barrier Coatings

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Mullite is the most attractive material in Material Science for TBC—thermal barrier coatings. As a TBC material, enhancement in its properties like thermal shock resistance is reported when an intermittent phase like lanthanum oxide—La2O3 is introduced. In this present research, effort has been put to identify La2O3 as an equivalent TBC material to Zirconia—ZrO2. A mixture of MZ (Mullite–ZrO2) and ML (Mullite–La2O3) at 10–30% weight ratio as top coat and NiCr as bond coat, is plasma sprayed on A356 aluminium specimen treated to T6 condition. The results obtained indicate that the ML2 plasma sprayed coatings exhibit regularly formed grain structure that increases the fracture toughness. The average hardness value and average adhesion strength values of the ML coatings were are 13.3 GPa and 9.5 MPa, which was 1.6 and 1.2 times larger than the traditional Zirconia coatings. The ML coatings also showed no corrosion or spallation or crack formation after 100 h of NACL salt spray test and after 100 cycles of thermal shock load at 550 °C at a cycle time of 10 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite—a review. J. Eur. Ceram. Soc. 28(2), 329–344 (2008)

    Article  CAS  Google Scholar 

  2. P. Bridjesh, G.R. Prasad, Study of performance of single cylinder diesel engine with Mullite as thermal barrier coating. IJSRES 1, 32–34 (2014)

    Article  Google Scholar 

  3. K.R. Reddy, K.P. Lee, A.I. Gopalan, M.S. Kim, A.M. Showkat, Y.C. Nho, Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci. 44, 3355–3364 (2006)

    Article  CAS  Google Scholar 

  4. Y.R. Lee, S.C. Kim, H. Lee, H.M. Jeong, A.V. Raghu, K.R. Reddy, B.K. Kim, Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19(1), 66–71 (2011)

    Article  CAS  Google Scholar 

  5. T. Juettner, H. Moertel, V. Svinka, R. Svinka, Structure of kaoline-alumina based foam ceramics for high temperature applications. J. Eur. Ceram. Soc. 27(2–3), 1435–1441 (2007)

    Article  CAS  Google Scholar 

  6. K.R. Reddy, B.C. Sin, C.H. Yoo, W. Park, K.S. Ryu, J.-S. Lee, D. Sohn, Youngil Lee, A new one-step synthesis method for coating multi-walled carbon nano tubes with cuprous oxide nano particles. Scr. Mater. 58, 1010–1013 (2008)

    Article  CAS  Google Scholar 

  7. M.M.S. Wahsh, R.M. Khattab, M. Awaad, Thermo mechanical properties of mullite/Zirconia reinforced alumina ceramic composites. Mater. Des. 41, 31–36 (2012)

    Article  CAS  Google Scholar 

  8. T. Takei, Y. Kameshima, A. Yasumori, K. Okada, Crystallisation kinetics of mullite in alumina–silica glass fibers. J. Am. Ceram. Soc. 82(10), 2876–2880 (1999)

    Article  CAS  Google Scholar 

  9. M. Yasuoka, K. Hirao, M.E. Brito, S. Kanzaki, High-strength and high-fracture-toughness ceramics in the Al2O3/LaAl11018 systems. J. Am. Ceram. Soc. 78(7), 1853–1856 (1995)

    Article  CAS  Google Scholar 

  10. X.Q. Cao, R. Vassen, D. Stöver, Ceramic material for thermal barrier coatings. J. Eur. Ceram. Soc. 24, 1–10 (2004)

    Article  CAS  Google Scholar 

  11. C. Aksel, The role of fine alumina and mullite particles on the thermomechanical behaviour of alumina–mullite refractory materials. Mater. Lett. 57, 708–714 (2002)

    Article  CAS  Google Scholar 

  12. M.N. Rahaman, J.R. Gross, R.E. Dutton, H. Wang, Phasestability, sintering and thermal conductivity of plasma-sprayed ZrO2–Gd2O3 compositions for potential thermal barrier coating applications. Acta Mater. 54, 1615 (2006)

    Article  CAS  Google Scholar 

  13. M. Matsumoto, N. Yamaguchi, H. Matsubara, Low thermal conductivity and high temperature stability of ZrO2–Y2O3–La2O3 coatings produced by electron beam PVD. Scripta Mater. 50, 867 (2004)

    Article  CAS  Google Scholar 

  14. S. Prusty, D.K. Mishra, B.K. Mohapatra, S.K. Singh. Correlation between properties of zirconia mullite and Y2O3 stabilised Zirconia mullite derived by various processing techniques. Adv. Appl. Ceram. 110(6), 360–366 (2013)

    Article  Google Scholar 

  15. S. Prusty, D.K. Mishra, B.K. Mohapatra, S.K. Singh, Structural and microstructural properties of fused ZrO2-Mullites. Mater. Manuf. Process. 26, 282–287 (2011)

    Article  CAS  Google Scholar 

  16. H. Lehmann, D. Pitzer, G. Pracht, R. Vassen, D. Stover, Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. J. Am. Ceram. Soc. 86, 1338 (2003)

    Article  CAS  Google Scholar 

  17. J.H. Yu, H.Y. Zhao, S.Y. Tao, X.M. Zhou, C.X. Ding, Thermal conductivity and thermal expansion coefficients of the lanthanum rare-earth-element zirconate system. J. Eur. Ceram. Soc. 30, 799 (2010)

    Article  CAS  Google Scholar 

  18. R. Vaben, X. Cao, F. Tietz, D. Basu, D. Stover, Zirconates as new materials for thermal barrier coatings. J. Am. Ceram. Soc. 83, 2023 (2000)

    Google Scholar 

  19. M. Abbasa, L. Guoa, H. Guo, Evaluation of stress distribution and failure mechanism in lanthanum– titanium–aluminum oxides thermal barrier coatings. Ceram. Int. 39, 5103–5111 (2013)

    Article  Google Scholar 

  20. X.L. Chen, Y.F. Zhang, X.H. Zhong, J.F. Zhang, Y.L. Cheng, Y. Zhao, Thermal cycling behaviours of the plasma sprayed thermal barrier coatings of hexaluminates with magneto plumbite structure. J. Eur. Ceram. Soc. 30, 649 (2010)

    Article  Google Scholar 

  21. N.P. Bansal, D.M. Zhu, Thermal properties of oxides with magne- to plumbite structure for advanced thermal barrier coatings. Surf. Coat. Technol. 202, 2698 (2008)

    Article  CAS  Google Scholar 

  22. X.Q. Cao, Y.F. Zhang, J.F. Zhang, X.H. Zhong, Y. Wang, H.M. Ma, Failure of the plasma-sprayed coating of lanthanum hexaluminate. J. Eur. Ceram. Soc. 28, 1979 (2008)

    Article  CAS  Google Scholar 

  23. H.B. Guo, H.J. Zhang, G.H. Ma, S.K. Gong, Thermo-physical and thermal cycling properties of plasma-sprayed La2Ti3O10 coating as potential thermal barrier materials. Surf. Coat. Technol. 204, 691 (2009)

    Article  CAS  Google Scholar 

  24. W. Ma, D. Mack, J. Malzbender, R. Vaben, D. Stover, Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings. J. Eur. Ceram. Soc. 28, 3071 (2008)

    Article  CAS  Google Scholar 

  25. C. Zanelli, M. Dondi, M. Raimondo. G. Guarini, Phase composition of alumina– mullite–zirconia refractory materials. J. Eur. Ceram. Soc. 30, 29–35 (2010)

    Article  CAS  Google Scholar 

  26. P. Kumar, M. Nath, A. Ghosh, H.S. Tripathi, Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide. Mater. Charact. 101, 34–39 (2015)

    Article  CAS  Google Scholar 

  27. R. Vassen et al., Zirconate as a new materials for thermal barrier coatings. J. Am. Ceram. Soc. 83(8), 2023–2028 (2000)

    Article  CAS  Google Scholar 

  28. K.K. Nithin, N. Surriyanarayanan, D.A. Sola, Mullite glass ceramic derived from silliminate through HCP and TAP techniques. J. Non-oxide Glasses 2, 23–34 (2010)

    Google Scholar 

  29. M.F. Bahbou, P. Nylen, J. Wigren, Effect of grit blasting and spraying angle on the adhesion strength of a plasma sprayed coating. J. Thermal Spray Technol. 13, 500–514 (2003)

    Google Scholar 

  30. Y. Li, K.A. Khor, Microstructure and composition analysis in plasma sprayed coatings of Al2O3/ZrSiO4 mixtures. Surf. Coat. Technol. 150(2–3), 125–132 (2002)

    Article  CAS  Google Scholar 

  31. S.B. Weber et al., Lanthanum zirconate thermal barrier coatings deposited by spray pyrolysis. Surf. Coat. Technol. 227, 10–14 (2013)

    Article  CAS  Google Scholar 

  32. B. Shreeram, D. Rajendran, N. Pandiaraj, Experimental study on synthesizing methods of low cost mullite—Zro2 glass ceramics. Int. J. Chem. Phys. Sci. 4, 20–28 (2015)

    CAS  Google Scholar 

  33. S. Sathish, M. Geetha, Comparative study on corrosion behaviour of plasma sprayed Al2O3, ZrO2, Al2O3/ZrO2 and ZrO2/Al2O3 coatings. Trans. Nonferrous Met. Soc. China 26, 1336–1344 (2016)

    Article  CAS  Google Scholar 

  34. S.P. Sahu et al., Development, characterization, erosion wear response of plasma sprayed fly-ash aluminium coatings. Mater. Des. 31, 1165–1173 (2010)

    Article  CAS  Google Scholar 

  35. S. Yugeswaran et al., Influence of critical plasma spraying parameter (CPSWP) on plasma sprayed alumina–titania composite coatings. Ceram. Int. 2010; 36:141–149

    Article  CAS  Google Scholar 

  36. S. Yugeswaran, V. Selvarajan, L. Lusvarghi, Z. Karoly, J. Szepvolgyi, Synthesis of mullite from laboratory waste silica through transferred arc plasma processing method. Mater. Manuf. Process. 26, 813–820 (2011)

    Article  CAS  Google Scholar 

  37. S. Yugeswaran, K. Suresh, V. Selvarajan, L. Lusvarghi, Z. Karoly, J. Szépvölgy, Synthesis of mullite by means of transferred and nontransferred arc plasma melting. Mater. Manuf. Process. 25(9), 909–914 (2010)

    Article  CAS  Google Scholar 

  38. Y. Li, K.A. Khor, Plasma spraying of Al2O3 and ZrSiO4 to form ZrO2-mullite composites. Mater. Manuf. Process. 14, 661–677 (1999)

    Article  CAS  Google Scholar 

  39. M.E. Smagorinski, P.G. Tsantrizos. Development of light composite materials with low coefficients of thermal expansion. Mater. Sci. Technol. 16, 853–861 (2013)

    Article  Google Scholar 

  40. Z. Yan, Y. Xu, J. Li, Preparation and characterisation of three-layered environmental barrier coatings onto silicon carbide substrate. Mater. Res. Innovations S4, 963–967 (2014)

    Google Scholar 

  41. E.M.M. Ewais et al., Tailoring of functionally graded Zirconia—mullite/alumina ceramics. J. Am. Cer. Soc. 32, 1561–1573 (2012)

    Article  CAS  Google Scholar 

  42. E. Gracia et al., Thermal conductivity in mullite/ZrO2 composite coatings. Ceram. Int. 36:1609–1614 (2010)

    Article  Google Scholar 

  43. H. Ji et al., Effect of La2O3 additives on the strength and microstructure of mullite ceramics obtained from coal gangue and γ-Al2O3. Ceram. Int. 39, 6841–6846 (2013)

    Article  CAS  Google Scholar 

  44. D.J. Duval et al., Ceramic and Glass Materials: Structures, Properties and Processing. (Springer, New York, 2008

    Google Scholar 

  45. S. Yugeswaran, V. Selvarajan, P.V. Ananthapadmanabhan, L. Lusvarghi, Twin step synthesis of lanthanum zirconate through transferred arc plasma processing. J. Phys. 208, 012119 (2010)

    Google Scholar 

  46. W.J. Wang et al., The role of lanthanum oxide on wear and contact fatigue damage resistance of laser cladding Fe-based alloy coating under oil lubrication condition. Tribol. Int. 94, 470–478 (2016)

    Article  CAS  Google Scholar 

  47. M. Saremi, A. Afrasiabi, A. Kobayashi, Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature ox- ideation. Surf. Coat. Technol. 202, 3233–3238 (2008)

    Article  CAS  Google Scholar 

  48. B. Shreeram, I. Rajendran, Corrosion, adhesion and erosion study of MZ and ML system using thermal plasma. Int. J. Heavy Vehicle Syst. (in press)

  49. S.T. Aruna, N. Balaji, K.S. Rajam, Phase transformation and wear studies of plasma sprayed yittria stabilized Zirconia coatings containing various mol% of yittria. Mater. Characterization 62, 697–705 (2011)

    Article  CAS  Google Scholar 

  50. Y.-P. Zhang, S.-H. Lee, K.R. Reddy, A.I. Gopalan, K.-P. Lee, Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J. Appl. Polym. Sci. 104, 2743–2750 (2007)

    Article  CAS  Google Scholar 

  51. K.R. Reddy, K.-P. Lee, A.I. Gopalan, Self-assembly directed synthesis of poly(ortho-toluidine)-metal(gold and palladium) composite nanospheres. J. Nanosci. Nanotechnol. 7, 3117–3125 (2007)

    Article  CAS  Google Scholar 

  52. A.M. Showkat, Y.-P. Zhang, M.S. Kim, A.I. Gopalan, K.R. Reddy, K.-P. Lee, Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica. Bull. Korean Chem. Soc. 28(11), 1985–1992 (2007)

    Article  CAS  Google Scholar 

  53. K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photo catalysis. Appl. Catal. A 489, 1–16 (2015)

    Article  CAS  Google Scholar 

  54. K.R. Reddy, K. Nakata, T. Ochiai, T. Murakami, D.A. Tryk, A. Fujishima. Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2. Nanofiber Compos. 11, 3692–3695 (2011)

    CAS  Google Scholar 

  55. K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photo catalysis. Mater. Res. Express 1, 015012 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

A Special thanks to Dr. G. Shanmugavelayutham—Associate Professor, Department of Physics, Bharathiar University for his constant support and guidance in conducting the TAP experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ranjith Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreeram, B., Rajendran, I. & Ranjith Kumar, E. Tailoring of Functionally Graded Mullite: La2O3 Coatings by Transferred Arc Plasma for Thermal Barrier Coatings. J Inorg Organomet Polym 28, 2484–2493 (2018). https://doi.org/10.1007/s10904-018-0920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0920-x

Keywords

Navigation