Skip to main content
Log in

Synthesis Characterization, Antimicrobial, Antioxidant, and Cytotoxic Activities of ZnO Nanorods on Reduced Graphene Oxide

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanorods decorated on reduced graphene oxide (RGO) nanocomposite was synthesized by one-pot hydrothermal synthesis. The morphology and the properties of the synthesized RGO–ZnO composites were characterized by XRD, FT-IR, Raman spectroscopy, FE-SEM-EDAX, HR-TEM, UV–Vis spectroscopy, and X-ray photo spectroscopy techniques. The antimicrobial properties of the graphene nanocomposite were examined against four different pathogens by agar well diffusion method, and antioxidant properties of the same were examined by four different free radical scavenging assays. It possessed no toxic effects on HEK293 Human embryonic kidney cell line. The synergistic effects between ZnO nanorods and RGO sheets enhanced the antimicrobial and antioxidant properties of the composite. The zinc ions in the solution dispersed on the RGO sheets enabled the intimate contact with microbes and induced the microbes to death. The results state that the RGO–ZnO nanocomposite exhibited remarkably enhanced antimicrobial efficacy and excellent cytotoxic property. The prepared RGO–ZnO nanocomposite was considered as a potent candidate for antibacterial and antioxidant activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Yip, L.W. Liu, K.H. Wong, P.H.M. Leung, C.W.M. Yuen, M.C. Cheung, Investigation of antifungal and antibacterial effects of fabric padded with highly stable selenium nanoparticles. J. Appl. Polym. Sci. 131, 8886–8893 (2014)

    Article  Google Scholar 

  2. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  CAS  Google Scholar 

  3. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Nanomaterials, 48, 7752–7777 (2009)

    CAS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim,.S.V. Morozov, D. Jiang, Y. Zhang,.S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field Effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  5. Q. Wu, Z. Xu, Y. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano. 4, 1963–1970 (2010)

    Article  CAS  Google Scholar 

  6. W. Bao, G. Liu, Z. Zhao, H. Zhang, D. Yan, A. Deshpande, B. LeRoy, C.N. Lau, Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices. Nano Res. 3, 98–102 (2010)

    Article  CAS  Google Scholar 

  7. D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L. Saraf, V.J. Zhang, I. Aksay, A. Liu, Self-assembled TiO2–graphene hybrid nanostructures for enhanced li-ion insertion. ACS Nano 3, 907–914 (2009)

    Article  CAS  Google Scholar 

  8. J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascon Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)

    Article  CAS  Google Scholar 

  9. G. Williams, B. Seger, P.V. Kamat, TiO2—graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)

    Article  CAS  Google Scholar 

  10. C. Xu, X. Wang, L. Yang, Y. Wu, Fabrication of a graphene-cuprous oxide composite. J. Solid State Chem. 182, 2486–2490 (2009)

    Article  CAS  Google Scholar 

  11. N.T. Hu, Y.Y. Wang, J. Chai, R.G. Gao, Z. Yang, W.E.S. Kong, Y.F. Zhang, Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens. Actuators B 163, 107–114 (2012)

    Article  CAS  Google Scholar 

  12. J.C. Lin, B.R. Huang, T.C. Lin, Hybrid structure of graphene sheets/ ZnO nanorods for enhancing electron field emission properties. Appl. Surf. Sci. 289, 384–387 (2014)

    Article  CAS  Google Scholar 

  13. B. Jaleh, A. Jabbari, Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl. Surf. Sci. 320, 339–347 (2014)

    Article  CAS  Google Scholar 

  14. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)

    Article  CAS  Google Scholar 

  15. B. Seger, P.V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C 113, 7990–7995 (2009)

    Article  CAS  Google Scholar 

  16. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y. Wu, H. Kind,.E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet. Nanowire Nano. Sci. 292, 1897–1899 (2001)

    CAS  Google Scholar 

  17. J.C. Che, C.T. Tang, Preparation and application of granular ZnO/Al2O3 catalyst for the removal of hazardous trichloroethylene. J. Hazard. Mat. 142, 88–96 (2007)

    Article  Google Scholar 

  18. Z.L. Wang, Functional oxide nanobelts: materials, properties and potential applications is nanosystems and biotechnology. Annu. Rev. Phys. Chem. 55, 159–196 (2004)

    Article  CAS  Google Scholar 

  19. J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods 54, 177–182 (2003)

    Article  CAS  Google Scholar 

  20. S.H. Choi, Y.P. Zhang, A. Gopalan, K.P. Lee, H.D. Kang, Preparation of catalytically efficient precious metallic colloids by γ-irradiation and characterization. Colloids Surfaces A 256, 165–170 (2005)

    Article  CAS  Google Scholar 

  21. K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticle. Langmuir 27, 4020–4028 (2011)

    Article  CAS  Google Scholar 

  22. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012)

    Article  CAS  Google Scholar 

  23. H. Ma, P.L. Williams, S.A. Diamond, Ecotoxicity of manufactured ZnO nanoparticlesA review. Environ. Pollut. 172, 76–85 (2013)

    Article  CAS  Google Scholar 

  24. L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9, 479–489 (2007)

    Article  Google Scholar 

  25. K.M. Kumar, B.K. Mandal, E.A. Naidu, M. Sinha, K.S. Kumar, P.S. Reddy, Synthesis and characterisation of flower shaped zinc oxide nanostructures and its antimicrobial activity. Spectrochimica Acta A 104, 171–174 (2013)

    Article  Google Scholar 

  26. A. Lipovsky, Y. Nitzan, A. Gedanken, R. Lubart, Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22, 101–105 (2011)

    Article  Google Scholar 

  27. S. Vlad, C. Tanase, D. Macocinschi, C. Ciobanu, T. Balaes, D. Filip, D. Gostin, L.M. Gradinaru, Digest J. Nanomater. Biostruct. 7, 51–58 (2012)

    Google Scholar 

  28. J. You, Y. Zhang, Z. Hu, Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. 85, 161–167 (2011)

    Article  CAS  Google Scholar 

  29. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanotechnol. Biol. Med. 7, 184–192 (2012)

    Article  Google Scholar 

  30. J. Sawai, T. Yoshikawa, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J. Appl. Microbiol. 96, (803–809) (2004)

    Article  CAS  Google Scholar 

  31. P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal oxide nanoparticles as bactericidal agents. Langmuir 18, 6679–6686 (2002)

    Article  CAS  Google Scholar 

  32. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)

    Article  CAS  Google Scholar 

  33. Z. Huang, Xu.. Zheng,.D. Yan, G. Yin,. X. Liao, Y. Kang, Y. Yao,. D. Huang, B. Hao, Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24, 4140–4144 (2008)

    Article  CAS  Google Scholar 

  34. A. Kahru, H.C. Dubourguier, I. Blinova, A. Ivask, K. Kasemets, Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8, 5153–5170 (2008)

    Article  CAS  Google Scholar 

  35. O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–5736 (2010)

    Article  CAS  Google Scholar 

  36. H Wenbing, P. Cheng, L. Weijie, H. Qing, F. Chunhai, L. Min, L. Xiaoming, Graphene-based antibacterial paper. Acs Nano 4, 4317–4323 (2010)

    Article  Google Scholar 

  37. Y. Chang, S.T. Yang, J.H. Liu, E. Dong, Y.W. Wang, A. Cao, Y. Liu, H. Wang, In vitro toxicity evaluation of graphene oxide on A549 cells, Toxicol. Lett. 200, 201–210 (2011)

    Article  CAS  Google Scholar 

  38. A. Lukowiak, bA. Kedziora, W. Strek, Antimicrobial graphene family materials: progress, advances, hopes and fears. Adv. Colloid Interface Sci. 236, 101–112 (2016)

    Article  CAS  Google Scholar 

  39. N.W. Pu, C.A. Wang, Y. Sung, Y.M. Liu, M.D. Ger, Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater. Lett. 63, 1987–1989 (2009)

    Article  CAS  Google Scholar 

  40. C.Y. Kong, W.L. Song, M.J. Meziani, K.N. Tackett, L. Cao, A.J. Farr, A. Anderson, Y.P. Sun, Supercritical fluid conversion of graphene oxides. J. Supercrit. Fluids 61, 206–211 (2012)

    Article  CAS  Google Scholar 

  41. S. Bykkam, S. Narsingam, M. Ahmadipour, T. Dayakar, K. Venkateswara Rao, C. Shilpa Chakra, S. Kalakotla, Few layered graphene Sheet decorated by ZnO Nanoparticles for Anti-Bacterial. Appl. Superlattices Microstruct. 83, 776–784 (2015)

    Article  CAS  Google Scholar 

  42. A.R. Chowdhuri, S. Tripathy, S. Chandra, S. Roy, S.K. Sahu, A ZnO decorated chitosan-graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ros generation. RSC Adv. 5, 49420–49428 (2015)

    Article  Google Scholar 

  43. C.H. Chen, Y.F. Dai, Effect of chitosan on interfacial polymerization of aniline. Carbohydr. Polym. 84, 840–843 (2011)

    Article  CAS  Google Scholar 

  44. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  45. K. Karthikeyan, R. Mohan, S.J. Kim, Graphene oxide as a photocatalytic material. Appl. Phys. Lett. 98, 244101–244103 (2011)

    Article  Google Scholar 

  46. A.V. Badarinath, K.M. Rao, C.M.S. Chetty, V. Ramkanth, T.V.S. Rajan, K. Gnanaprakash, A review on in-vitro antioxidant methods: comparisions, correlations and considerations. Int. J. PharmTech Res. 2, 1276–1285 (2010)

    CAS  Google Scholar 

  47. D. Menaga, S. Rajakumar, P.M. Ayyasamy, Free radical scavenging activity of methanolic extract of pleurotus florida mushroom. Int. J. Pharm. Pharm. Sci. 5, 0975–1491 (2013)

    Google Scholar 

  48. R.J. Ruch, S.J. Cheng, E. Klaunig, Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 10, 1003–1008 (1989)

    Article  CAS  Google Scholar 

  49. G. Kaur, V. Gupta, P. Bansal, Innate antioxidant activity of some traditional formulations. J. Adv. Pharm. Technol. Res. 8, 39–42 (2017)

    Article  Google Scholar 

  50. C. Sousa, P. Valentao, F.R. Ferreres, M. Seabra, P.B. Andrade, Tronchuda Cabbage (Brassica oleracea L. var. costata DC): Scavenger of reactive nitrogen species. J. Agric. Food. Chem. 56, 4205–4211 (2008)

    Article  CAS  Google Scholar 

  51. L. Zhang, G. Du, B. Zhou, L. Wang, Green synthesis of flower-like ZnO decorated reduced graphene oxide composites. Ceram. Int. 40, 1241–1244 (2014)

    Article  CAS  Google Scholar 

  52. X. Qin, Y. Zhang, N. Xue, P. Kittiwattanothai, N. Kongsittikul, N. Rodthongkum, S. Limpanart, M. Ma, L. Riping, A facile synthesis of nanorods of ZnO/graphene oxide composites with enhanced photocatalytic activity. Appl. Surf. Sci. 321, 226–232 (2014)

    Article  CAS  Google Scholar 

  53. B. Jiang, C. Tian, Q. Pan, Z. Jiang, J.Q. Wang, W. Yan, H. Fu, Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets. J. Phys. Chem. C 115, 23718–23725 (2011)

    Article  CAS  Google Scholar 

  54. A. Mihranyan, A.P. Llagostera, R. Karmhag, M. Strømme, Moisture sorption by cellulose powders of varying crystallinity. Int. J. Pharm. 269, 433–442 (2004)

    Article  CAS  Google Scholar 

  55. K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35, 353–359 (2011)

    Article  CAS  Google Scholar 

  56. Y. Zhang, C. Pan, TiO /graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. J. Mater. Sci. 46, 2622–2626 (2011)

    Article  CAS  Google Scholar 

  57. J. Shen, M. Shi, B. Yan, H. Ma, N. Li, M. Ye, Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Res. 4, 795–806 (2011)

    Article  CAS  Google Scholar 

  58. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Appl. Phys. Lett. 80, 1909–1911 (2002)

    Article  CAS  Google Scholar 

  59. O. Yamamoto, J. Sawai, T. Sasamoto, Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution. J. Inorg. Mater. 2, 451–454 (2000)

    Article  Google Scholar 

  60. L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids—A potential antibacterial agent. Prog. Nat. Sci. 18, 939–944 (2008)

    Article  CAS  Google Scholar 

  61. R. Hariharan, S. Senthilkumar, A. Suganthi, M. Rajarajan, Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action. J. Photochem. Photobiol B 116, 56–65 (2012)

    Article  CAS  Google Scholar 

  62. O. Yamamoto, M. Hotta, J. Sawai, T. Sasamoto, H. Kojima, Antifungal characteristics of spherical carbon materials with zinc oxide. J. Ceram. Soc. Jpn. 111, 8, 614–616 (2003)

    Article  Google Scholar 

  63. P. Dibrov, J. Dzioba, K.K. Gosink, C.C. Hase, Chemiosmotic mechanism of antimicrobial activity of Ag + in Vibrio cholera. Chemotherapy 46, 2668–2670 (2002)

    CAS  Google Scholar 

  64. G.H. Naik, K.I. Priyadarsini, J.G. Satav, M.M. Banavalikar, D.P. Sohoni, M.K. Biyani, H. Mohan, Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry. 63, 97–104 (2003)

    Article  CAS  Google Scholar 

  65. J. Pal, S. Ganguly, K.S. Tahsin, K. Acharya, In vitro free radical scavenging activity of wild edible mushroom, Pleurotus squarrosulus (Mont.) Singer. Indian J. Exp. Biol. 47, 1210–1218 (2010)

    Google Scholar 

  66. J.P. Saikia, S. Paul, B.K. Konwar, S.K. Samdarshi, Nickel oxide nanoparticles: a novel antioxidant. Colloids Surf. B 78, 146–148 (2010)

    Article  CAS  Google Scholar 

  67. J. Wang, X.Z. Yuan, Y. Jin, H. Tian, Song, Free radical and reactive oxygen species scavenging activities of peanut skins extract. Food. Chem. 104, 242–250 (2007)

    Article  CAS  Google Scholar 

  68. A. Kumaran, R.J. Karunakaran, In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT 40, 344–352 (2007)

    Article  CAS  Google Scholar 

  69. J. Sawai, R. Doi, Y. Maekawa, T. Yoshikawa, H. Kojima, Indirect conductimetric assay of antibacterial activities. J. Ind. Microbiol. Biotechnol. 29, 296–298 (2002)

    Article  CAS  Google Scholar 

  70. Y.N. Chang, M. Zhang, L. Xia, J. Zhang, G. Xing, The toxic effects and mechanisms of CuO and ZnO. Nanoparticles Mater. 5, 2850–2871 (2012)

    CAS  Google Scholar 

  71. S.H. Hu, Y.W. Chen, W.T. Hung, I.W. Chen, S.-Y. Chen, Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv. Mater. 24, 1748–1754 (2012)

    Article  CAS  Google Scholar 

  72. H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically Strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557–3561 (2008)

    Article  CAS  Google Scholar 

  73. H. Hong, J. Shi, Y. Yang, Y. Zhang, J.W. Engle, R.J. Nickles, X. Wang, W. Cai, Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett. 11, 3744–3750 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Professor and Head, Department of Industrial Chemistry for enabling the HR-SEM analysis and the School of Physics, Alagappa University, Karaikudi, Tamil Nadu, India for the provision of XRD, and Raman analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gurumallesh Prabu.

Ethics declarations

Conflict of interest

The authors indicate no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeswari, R., Prabu, H.G. Synthesis Characterization, Antimicrobial, Antioxidant, and Cytotoxic Activities of ZnO Nanorods on Reduced Graphene Oxide. J Inorg Organomet Polym 28, 679–693 (2018). https://doi.org/10.1007/s10904-017-0711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0711-9

Keywords

Navigation