Skip to main content
Log in

Magneto Optical Properties of FeBxFe2−xO4 Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, FeBxFe2−xO4 nanoparticles (NPs) were synthesized by the polyol method. The M–H hysteresis curves exhibit superparamagnetic characteristics that are both coercivity and remanent magnetization values are negligible. The particle size dependent Langevin function was applied to calculate the magnetic particle dimensions around 9 nm. The measured magnetic moments of NPs are in range of (1.52–2.2) µB and almost half or less with respect to 4 µB of bulk Fe ferrite. Magnetic anisotropy was specified as uniaxial and calculated effective anisotropy constants (K eff ) are between 43.3 × 104 and 19.4 × 104 emu/g. The UV–Vis diffuse reflectance spectroscopy and Kubelka–Munk theory were used to determine the optical properties. The estimated optical band gap values (2.15–2.48 eV) of FeBxFe2−xO4 NPs are bigger with respect to reported values (1.88–2.12 eV) for Fe3O4 NPs in the literature. The bigger E g values are mainly attributed to B concentration and partly to quantum confinement effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.I. Park, J.H. Kim, J.H. Lim, C.O. Kim, Surface-modified magnetic nanoparticles with lecithin for applications in biomedicine. Curr. Appl. Phys. 8, 706711 (2008)

    Google Scholar 

  2. L. Zhang, X. Zhua, H. Sun, G. Chi, J. Xu, Y. Sun, Control synthesis of magnetic Fe3O4–chitosan nanoparticles under UV irradiation in aqueous system. Curr. Appl. Phys. 10, 828836 (2010)

    Google Scholar 

  3. A. Manikandan, J.J. Vijaya, J.A. Mary, L.J. Kennedy, A. Dinesh, Structural optical and magnetic properties of Fe3O4 nanoparticles prepared by a facile microwave combustion method. J. Ind. Eng. Chem. 20, 2077–2085 (2014)

    Article  CAS  Google Scholar 

  4. M. Ayad, N. Salahuddin, A. Fayed, B.P. Bastakoti, N. Suzuki, Y. Yamauchi, Chemical design of a smart chitosan–polypyrrole–magnetite nanocomposite toward efficient water treatment. Phys. Chem. Chem. Phys. 16, 21812–21819 (2014)

    Article  CAS  Google Scholar 

  5. R. Ramesh, M. Rajalakshmi, C. Muthamizhchelvan, S. Ponnusamy, Synthesis of Fe3O4 nanoflowers by one pot surfactant assisted hydrothermal method and its properties. Mater. Lett. 70, 7378–7385 (2012)

    Article  Google Scholar 

  6. L. Han, Y. Wei, Low-temperature synthesis of Fe3O4 microroses and their application in water treatment. Mater. Lett. 70, 1–5 (2012)

    Article  CAS  Google Scholar 

  7. C.L. Chien, Granular magnetic solids (invited). J. Appl. Phys. 69, 5267–5273 (1991)

    Article  CAS  Google Scholar 

  8. T.A. Yamamoto, R.D. Shull, P.R. Bandaru, F. Cosandey, H.W. Hahn, Superparamagnetic nanocomposite of silver/iron-oxide by inert gas condensation. Jpn. J. Appl. Phys. 33, L1301–L1308 (1991)

    Article  Google Scholar 

  9. K.G. Anit, C. de Julian, M. Gonzalez, Coercivity of Fe@SiO2 nanocomposite materials prepared by ball milling. J. Appl. Phys. 76, 6573–6580 (1994)

    Article  Google Scholar 

  10. M.R. Zachariah, M.I. Aquino, R.D. Shull, E.B. Stell, Formation of superparamagnetic nanocomposites from vapor phase condensation in a flame. Nanostrucutred Mater. 5, 383–389 (1995)

    Article  CAS  Google Scholar 

  11. H. Shokrollahi, K. Janghorban, Influence of additives on the magnetic properties, microstructure and densification of Mn–Zn soft ferrites. Mater. Sci. Eng. B 141, 91–107 (2007)

    Article  CAS  Google Scholar 

  12. S.M. Patange, S.E. Shirsath, K.S. Lohar, S.S. Jadhav, N. Kulkarni, K.M. Jadhav, Electrical and switching properties of NiAlxFe2−xO4ferrites synthesized by chemical method. Phys. B 406(3), 663–668 (2011)

    Article  CAS  Google Scholar 

  13. M.P. Horvath, Microwave application of soft ferrite. J. Magn. Magn. Mater. 215–216, 171–183 (2000)

    Article  Google Scholar 

  14. Y.I. Kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys. B 337, 42–51 (2003)

    Article  CAS  Google Scholar 

  15. P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Structural, magnetic and electrical properties of Co–Ni–Mn ferrites synthesized by co-precipitation method. J. Alloy. Compd. 492, 590–596 (2010)

    Article  CAS  Google Scholar 

  16. N. Kumari, V. Kumarn, S.K. Singh, Synthesis, structural and dielectric properties of Cr3+ substituted Fe3O4 nano-particles. Ceram. Int. 40, 12199–12205 (2014)

    Article  CAS  Google Scholar 

  17. S.Y. An, I.S. Kim, S.H. Son, S.Y. Song, J.W. Hahn, K.R. Choi, S.W. Hyun, C.M. Kim, C.S. Kim, Effect of boron substitution on the properties of NiZnCu ferrite for multilayer chip inductors. Thin Solid Films 519, 8388–8390 (2011)

    Article  CAS  Google Scholar 

  18. B. Yuksel, S. Kirtay, T. Ozkan, E. Acikalin, H. Erkalfa, The effect of B2O3 addition to the microstructure and magnetic properties of Ni0.4Zn0.6Fe2O4 ferrite. J. Magn. Magn. Mater. 320, 714–718 (2008)

    Article  CAS  Google Scholar 

  19. A.V. Apostolov, M.T. Mihov, P.T.T. Cholakov, Magnetic properties of some Boron ferrite. J. Magn. Magn. Mater. 15–18, 1309–1310 (1980)

    Article  Google Scholar 

  20. R.C.O. Handley, Modern magnetic materials: principle and application (Wiley, New York, 2000), p. 126

    Google Scholar 

  21. Y.U.C. Leng, L.Y. Guang, X.H. Yu, G.J. Sheng, Influence of boron content in iron oxide on performance of Mn–Zn Ferrites. J. Iron Steel Res. Int. 17, 59–62 (2010)

    Google Scholar 

  22. D.L.L. Pelecky, R.D. Rieke, Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770–1783 (1996)

    Article  Google Scholar 

  23. K. Chinnaraj, A. Manikandan, P. Ramu, S. Arul Antony, P. Neeraja, Comparative study of microwave and sol-gel assisted combustion methods of Fe3O4 nanostructures: Structural, morphological, optical, magnetic and catalytic properties. J. Supercond. Novel Magn. 28, 179–190 (2015)

    Article  CAS  Google Scholar 

  24. S.F.J. Cox, J.S. Lord, A.D. Hillier, S.P. Cottrel, Ph Wagner, C.P. Ewels, Phys. B 404, 841–844 (2009)

    Article  CAS  Google Scholar 

  25. D.S. Mathew, R.S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51 (2007)

    Article  CAS  Google Scholar 

  26. N. Kemikli, H. Kavas, S. Kazan, A. Baykal, R. Ozturk, Synthesis of protoporphyrin coated SPION via dopamine anchor. J. Alloy. Compd. 502, 439–444 (2010)

    Article  CAS  Google Scholar 

  27. A.R. West, Solid state chemistry and its application (Wiley, New York, 1984), p. 270

    Google Scholar 

  28. A. Veluchamy, H. Ikuta, M. Wakihara, Boron-substituted manganese spinel oxide cathode for lithium ion battery. Solid State Ionics 143, 161–171 (2001)

    Article  CAS  Google Scholar 

  29. A. Demir, R. Topkaya, A. Baykal, Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: its magnetic investigation. Polyhedron 65, 282–287 (2013)

    Article  CAS  Google Scholar 

  30. A. Demir, A. Baykal, H. Sözeri, R. Topkaya, Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes. Synth. Met. 187, 75–80 (2014)

    Article  CAS  Google Scholar 

  31. J.M.D. Coey, Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)

    Article  CAS  Google Scholar 

  32. Q.A. Pankhurst, R.J. Pollard, Origin of the spin-canting anomaly in small ferrimagnetic particles. Phys. Rev. Lett. 67, 248–250 (1991)

    Article  CAS  Google Scholar 

  33. D. Vollath, D.V. Szabó, R.D. Taylor, J.O. Willis, Synthesis and magnetic properties of nanostructured maghemite. J. Mater. Res. 12, 2175–2182 (1997)

    Article  CAS  Google Scholar 

  34. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B 54, 9288–9296 (1996)

    Article  CAS  Google Scholar 

  35. M. García del Muro, X. Batlle, A. Labarta, Erasing the glassy state in magnetic fine particles. Phys. Rev. B 59, 13584–13587 (1999)

    Article  Google Scholar 

  36. A. Baykal, S. Güner, A. Demir, S. Esir, F. Genç, Effects of zinc substitution on magneto-optical properties of Mn1−xZnxFe2O4/SiO2 nanocomposites. Ceram. Int. 40, 13401–13408 (2014)

    Article  CAS  Google Scholar 

  37. A. Baykal, S. Güner, A. Demir, Synthesis and magneto-optical properties of triethylene glycol stabilized Mn1−xZnx Fe2O4 nanoparticles. J. Alloy. Compd. 619, 5–11 (2015)

    Article  CAS  Google Scholar 

  38. A. Baykal, S. Esir, A. Demir, S. Güner, Magnetic and optical Properties of Cu1−xZnxFe2O4 Nanoparticles Dispersed in a silica matrix by a sol–gel auto-combustion method. Ceram. Int. 41, 231–239 (2015)

    Article  CAS  Google Scholar 

  39. H. Kavas, A. Baykal, M.S. Toprak, Y. Köseoğlu, M. Sertkol, B. Aktaş, Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J. Alloy. Compd. 479, 49–55 (2009)

    Article  CAS  Google Scholar 

  40. W.F. Brown, Theory of the approach to magnetic saturation. Phys. Rev. 58, 736–743 (1940)

    Article  Google Scholar 

  41. M.E. Sadat, R. Patel, J. Sookoor, S.L. Bud’ko, R.C. Ewing, J. Zhang, H. Xu, Y. Wang, G.B. Pauletti, D.B. Mast, D. Shi, Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater. Sci. Eng. C 42, 52–56 (2014)

    Article  CAS  Google Scholar 

  42. J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamics hysteresis loop calculations of magnetic single domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011)

    Article  Google Scholar 

  43. M. Respaud, J.M. Broto, H. Rakoto, J.C. Ousset, J. Osuna, T. Ould Ely, C. Amiens, B. Chaudret, S. Askenazy, Magnetization measurements on fine cobalt particles. Phys. B 246–2479, 532–536 (1998)

    Article  Google Scholar 

  44. P. Kubelka, F. Munk, Ein Beitrag zur Optik der Farbanstriche. Z. Tech. Phys. 12, 593–599 (1931)

    Google Scholar 

  45. A. Baykal, S. Güner, A. Demir, S. Esir, Y. Bakış, Magneto-optical properties of Cu1−xZnxFe2O4 nanoparticles. Superlattice Microstruct. 74, 184–197 (2014)

    Article  Google Scholar 

  46. S.A. Kulkarni, P.S. Sawadh, P.K. Palei, K.K. Kokate, Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram. Int. 40, 1945–1949 (2014)

    Article  CAS  Google Scholar 

  47. M.B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J.S. Thakur, G. Lawes, R. Naik, Bandgap engineering by tuning particle size and crystallinity of SnO2–Fe2O3 nanocrystalline composite thin films. Appl. Phys. Lett. 93, 231909–231916 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Fatih University, Research Project Foundation (Contract No: P50020902-2) and TUBITAK (Contract No: 110T487) for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir, M., Geleri, M., Güner, S. et al. Magneto Optical Properties of FeBxFe2−xO4 Nanoparticles. J Inorg Organomet Polym 25, 1111–1119 (2015). https://doi.org/10.1007/s10904-015-0217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0217-2

Keywords

Navigation