Skip to main content

Advertisement

Log in

The Biocompatibility of Biodegradable Glycine Containing Polyphosphazenes: A Comparative study in Bone

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Polyphosphazenes have gained considerable attention as biomaterials for use in tissue engineering and orthopaedic reconstruction. In this paper we examined the polyphosphazenes’ in vivo biocompatibility and degradation by studying their ability to repair bone in a rabbit metaphyseal distal femur defect model. Matrices constructed from poly[(50% p-methylphenoxy)-(50%ethyl glycinato) phosphazene] (PPHOS-50) and poly[bis(ethyl glycinato) phosphazene] (PPHOS-100), were surgically implanted into a metaphyseal rabbit defect of the distal femur as constructs for tissue regeneration. Poly(lactide-co-glycolide) (PLAGA) implants, which are the biodegradable polymers most widely used clinically, and defects without polymers were used as controls in this experiment. Histological studies demonstrated that both PPHOS-50 and PPHOS-100 appeared to support bone growth comparable to the control PLAGA. By 12 weeks, femurs with polyphosphazene implants showed evidence of bone in-growth and a mild fibrous response. The PPHOS-50 implants were found to have a local tissue response that was more favorable than PPHOS-100 and similar to PLAGA. Biodegradable polyphosphazenes are a novel class of polymers which have been observed to facilitate bone growth in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. M. Chasin, A. Domb, E. Ron, E. Mathiowitz, K. Leong, C. T. Laurencin, H. Brem, S. Grossman and R. Langer (1990) in Chasin M., Langer R. (eds.) Biodegradable Polymers as Drug Delivery Systems, (Marcel Dekker Inc., New York)

    Google Scholar 

  2. Mills S. N. and S. S. Davis (1987) Cont. Drug Delivery, (IOP Publishing Limited, Bristol)

    Google Scholar 

  3. Heller J., Sparer R. V., Zenter G. M. (1990) in Chasin M., Langer R. (eds.) Biodegradable Polymers as Drug Delivery Systems, (Marcel Dekker Inc., New York)

    Google Scholar 

  4. Allcock H. R., Fuller R. J., Mack D. P., Matsumura K., Smeltz K. M. (1977) Macromolecules 10 824

    Article  CAS  Google Scholar 

  5. Piecuch JF J. F., Fedorka N. J. (1983) J. Oral & Maxillofacial Surg. 41(12) 801

    CAS  Google Scholar 

  6. Metsger D. S., Driskell T. D., Paulsrud J. R. (1982) J. Am. Dental Assoc. 105(6) 1035

    CAS  Google Scholar 

  7. Singh H., Vasudevan P., Misro M., Ray A. R., Guha S. K. (1982) J. Biomed. Mat. Res. 16(1) 3

    Article  Google Scholar 

  8. Sodian R., Sperling J. S., Martin D. P., Egozy A., Stock U., Mayer J. E., Vacanti J. P. (2000) Tissue Engineering 6(2) 183

    Article  CAS  Google Scholar 

  9. Bryan D. J., Holway A. H., Wang K. K., Silva A. E., Trantolo D. J., Wise D., Summerhayes I. C. (2000) Tissue Engineering 6(2) 129

    Article  CAS  Google Scholar 

  10. Hadlock T., Singh S., Vacanti J. P., McLaughlin B. J. (1999) Tissue Engineering 5(3) 187

    Article  CAS  Google Scholar 

  11. Williams, D.F. (Eds), Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society of Biomaterials, Chester, England, March 3–5 (Elsevier, Amsterdam,1986)

  12. Carnesale P. L., Spankus J. D. (1961) J. Bone Joint Surg. 41A 887

    Google Scholar 

  13. Younger E. M., Chapman M. W. (1989) J. Orthop. Trauma 3 192

    Article  CAS  Google Scholar 

  14. Gazdag A. R., Lane J. M., Glaser D., Forster R. A. (1995) J. Am. Acad. Orthop. Surg. 3 1

    Google Scholar 

  15. Garbuz D. S., Marsi B. A., Czitrom A. A. (1998) Clin. North Am 29 199

    CAS  Google Scholar 

  16. Fleming J. E. Jr., Cornell C. N., Muschler G. F. (2000) Orthop. Clin. North Am. 31 357

    Article  Google Scholar 

  17. Vacanti C. A., Vacanti J. P. (2000) Orthop. Clin. North Am. 31(3) 351

    Article  CAS  Google Scholar 

  18. Cornell C. N. (1999) Orthop. Clin. North Am. 30(4) 591

    Article  CAS  Google Scholar 

  19. Laurencin C. T., El-Amin S. F., Ibim S. E., Willoughby D. A., Attawia M., Allcock H. R., Ambrosio A. A. (1996) J. Biomed. Mat. Res. 30 133

    Article  CAS  Google Scholar 

  20. Allcock H.R. (2003) Chemistry and application of polyphosphazenes. New York Wiley

    Google Scholar 

  21. Laurencin C. T., Norman M. E., Elgendy H. M., El-Amin S. F., Allcock H. R., Pucher S. R., Ambrosio A. A. (1993) J. Biomed. Mat. Res. 27 963

    Article  CAS  Google Scholar 

  22. Crommen J. H., Schacht E. H., Mense E. H. (1992) Biomaterials 13(9) 601

    Article  CAS  Google Scholar 

  23. Ibim S. M., Uhrich K. E., Bronson R., El-Amin S. F., Langer R. S., Laurencin C. T. (1998) Biomaterials 19 941

    Article  CAS  Google Scholar 

  24. Allcock H. R., Gebura M., Kwon S., Neenan T. X. (1988) Biomaterials 9 500

    Article  CAS  Google Scholar 

  25. Allcock H. R., Kwon S., Riding G. H., Fitzpatrick R. J., Bennett J. L. (1988) Biomaterials 9 509

    Article  CAS  Google Scholar 

  26. Goedemoed J. H., deGroot K., Claessen A. M. E., Scheper R. J. (1991) J. Cont. Rel. 17 235

    Article  CAS  Google Scholar 

  27. Goedemoed J. H., Mense E. H. G., deGroot K., Claessen A. M. E., Scheper R. J. (1991) J. Cont. Rel. 17 245

    Article  CAS  Google Scholar 

  28. Allcock H. R., Fuller T. J., Matsumura K. (1982) Inorganic Chemistry 21 515

    Article  CAS  Google Scholar 

  29. Goedemoed J. H., deGroot K. (1988) Makromol. Chem. Makromol. Symp. 19 342

    Google Scholar 

  30. Grollman C. W. J., de Visser A. C., Wolke J. G. C., Van der Goot H., Timmerman H. (1986) J. Cont. Rel. 3 143

    Article  Google Scholar 

  31. Ibim S. M., Uhrich K. E., Attawia M., Shastri V. R. El-Amin S. F., Bronson R., Langer R., Laurencin C. T. (1998) J. Biomed. Mater. Res. 43 374

    Article  CAS  Google Scholar 

  32. Sethuraman S., Nair L. S., El-Amin S. F., Farrar R., Nguyen M. N., Singh A., Allcock H. R., Greish Y. E., Brown P. W., Laurencin C. T. (2006) J. Biomed. Mat. Res. 77A 679

    Article  CAS  Google Scholar 

  33. Wade C. W. R., Gourlay S., Rice R., Hegyeli A., Singler R., White J. (1978) In Carraher C. E., Sheats J. E., Pittman C. U. (Eds), Organometallic Polymers. Academic Press, New York, 289

    Google Scholar 

  34. Lakshmi S., Katti D. S., Laurencin C. T. (2003) Advance Drug Delivery Reviews 55 467

    Article  CAS  Google Scholar 

  35. Ambrosio A. A., Allcock H. R., Katti D. S., Laurencin C. T. (2002) Biomaterials 23 1667

    Article  CAS  Google Scholar 

  36. Jain J.P., Modi S., Domb A.J., Kumar N. (2005) J. Cont. Rel. 103 541

    Article  CAS  Google Scholar 

  37. Ibim S. M., El-Amin S. F., Goad M. E., Ambrosio A. A., Allcock H. R., Laurencin C. T. (1998) Pharm. Develop. Tech. 3(1) 55

    CAS  Google Scholar 

  38. Ibim S. M., Ambrosio A. A., Larrier D., Allcock H. R., Laurencin C. T. (1996) J. Cont. Rel. 40 31

    Article  CAS  Google Scholar 

  39. Katti D. S., Lakshmi S., Langer R., Laurencin C. T. (2002) Adv. Drug Deliv. Rev. 54 933

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cato T. Laurencin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Amin, S., Kwon, M., Starnes, T. et al. The Biocompatibility of Biodegradable Glycine Containing Polyphosphazenes: A Comparative study in Bone. J Inorg Organomet Polym 16, 387–396 (2006). https://doi.org/10.1007/s10904-006-9096-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-006-9096-x

Keywords

Navigation