Skip to main content
Log in

IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We propose IPRQP, an enhanced primal-dual interior-point relaxation method (IPRM), for solving convex quadratic programming. This method is based on a smoothing barrier augmented Lagrangian function for convex quadratic programming. IPRQP inherits the advantages of IPRM, including not requiring iterative points to be interior points, which makes IPRQP suitable for the warm-starting of combinatorial optimization problems. Compared to IPRM, the customized starting points allow the line search of IPRQP to contain only vector operations. In addition, IPRQP improves the updating scheme of the barrier parameter and provides a certificate of infeasibility. Some results on global convergence are presented. We implement the algorithm on convex quadratic programming problems from Maros-Mészaros and the benchmark problem sets NETLIB and Kennington, which contain feasible and infeasible linear programming problems. The numerical results show that our algorithm is reliable for feasible problems and efficient for detecting the infeasibility of infeasible problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Banjac, G., Goulart, P., Stellato, B., Boyd, S.: Infeasibility detection in the alternating direction method of multipliers for convex optimization. J. Optim. Theory Appl. 183(2), 490–519 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cartis, C., Gould, N.I.: Finding a point in the relative interior of a polyhedron (2007)

  3. Cheshmi, K., Kaufman, D.M., Kamil, S., Dehnavi, M.M.: NASOQ: numerically accurate sparsity-oriented QP solver. ACM Trans. Graph. (TOG) 39(4), 96–1 (2020)

    Article  Google Scholar 

  4. Dai, Y.H., Liu, X.W., Sun, J.: A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs. J. Ind. Manag. Optim. 16(2), 1009–1035 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Di Gaspero, L.: Quadprog++: a C++ library for quadratic programming which implements the Goldfarb-Idnani active-set dual method (2016)

  6. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frison, G., Diehl, M.: HPIPM: a high-performance quadratic programming framework for model predictive control. IFAC-PapersOnLine 53(2), 6563–6569 (2020)

    Article  Google Scholar 

  9. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw. (TOMS) 29(1), 58–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbert, J.C., Joannopoulos, É.: OQLA/QPALM–convex quadratic optimization solvers using the augmented Lagrangian approach, with an appropriate behavior on infeasible or unbounded problems (2014)

  11. Gondzio, J.: Warm start of the primal–dual method applied in the cutting-plane scheme. Math. Program. 83(1), 125–143 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl. 51(2), 457–480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://www.gurobi.com

  14. Kaufman, L.: Solving the Quadratic Programming Problem Arising in Support Vector Classification. MIT Press, Cambridge, MA (1998)

    Book  Google Scholar 

  15. Kouzoupis, D., Frison, G., Zanelli, A., Diehl, M.: Recent advances in quadratic programming algorithms for nonlinear model predictive control. Vietnam J. Math. 46(4), 863–882 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: The polynomial solvability of convex quadratic programming. USSR Comput. Math. Math. Phys. 20(5), 223–228 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao-McPherson, D., Kolmanovsky, I.: FBstab: a proximally stabilized semismooth algorithm for convex quadratic programming. Automatica 113, 108801 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X.W., Dai, Y.H.: A globally convergent primal–dual interior-point relaxation method for nonlinear programs. Math. Comput. 89(323), 1301–1329 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, X.W., Dai, Y.H., Huang, Y.K.: A primal–dual interior-point relaxation method with global and rapidly local convergence for nonlinear programs. Math. Methods Oper. Res. 96, 351–382 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, X.W., Dai, Y.H., Huang, Y.K., Sun, J.: A novel augmented Lagrangian method of multipliers for optimization with general inequality constraints. Math. Comput. 92(341), 1301–1330 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maes, C., Saunders, M.: QPBLUR: a regularized active-set method for sparse convex quadratic programming. In: Householder Symposium XVIII on Numerical Linear Algebra, p. 148 (2011)

  22. Maros, I., Mészáros, C.: A repository of convex quadratic programming problems. Optim. Methods Softw. 11(1–4), 671–681 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martin, A.D.: Mathematical programming of portfolio selections. Manag. Sci. 1(2), 152–166 (1955)

    Article  Google Scholar 

  24. Mehrotra, S.: On the implementation of a primal–dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mitchell, J.E.: Computational experience with an interior point cutting plane algorithm. SIAM J. Optim. 10(4), 1212–1227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization problems. Handb. Appl. Optim. 1(1), 65–77 (2002)

    Google Scholar 

  27. Netlib (2011). http://netlib.org/lp/

  28. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  29. Pandala, A.G., Ding, Y.R., Park, H.W.: qpSWIFT: a real-time sparse quadratic program solver for robotic applications. IEEE Robot. Autom. Lett. 4(4), 3355–3362 (2019)

    Article  Google Scholar 

  30. Pougkakiotis, S., Gondzio, J.: An interior point-proximal method of multipliers for convex quadratic programming. Comput. Optim. Appl. 78(2), 307–351 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: an operator splitting solver for quadratic programs. Math. Program. Comput. 12(4), 637–672 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wright, S.J.: Primal–Dual Interior-Point Methods, vol. 54. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The second author was supported by the NSFC Grants (Nos. 12071108 and 11671116). The third author was supported by the Natural Science Foundation of China (Nos. 11991020, 11631013, 11971372 and 11991021) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA27000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hong Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: some proofs

Appendix: some proofs

Proof of Lemma 2.2

Since \((y_l)_i(z_l)_i=\dfrac{\mu }{\rho }\) and \((z_l)_i-(y_l)_i=x_i-l_i-\dfrac{(s_l)_i}{\rho }\), we can conclude that

$$\begin{aligned} (y_l)_i\nabla _{x} (z_l)_i+ (z_l)_i\nabla _{x} (y_l)_i=0 \text {\quad and \quad } \nabla _{x} (z_l)_i-\nabla _{x} (y_l)_i=e_i. \end{aligned}$$

Accordingly, the relations in the first line of (13) immediately follow. The remaining relations in (13) and those in (14) can be confirmed in the same manner.

Differentiating the equations \((y_l)_i(z_l)_i = \dfrac{\mu }{\rho }\) and \((z_l)_i-(y_l)_i=x_i-l_i-\dfrac{(s_l)_i}{\rho }\) on \(\mu \) gives us

$$\begin{aligned} (y_l)_i\dfrac{\partial (z_l)_i}{\partial \mu }+(z_l)_i\dfrac{\partial (y_l)_i}{\partial \mu }=\dfrac{1}{\rho } \text { and } \dfrac{\partial (z_l)_i}{\partial \mu } - \dfrac{\partial (y_l)_i}{\partial \mu } = 0, \end{aligned}$$

thereby demonstrating that

$$\begin{aligned} \dfrac{\partial (z_l)_i}{\partial \mu }=\dfrac{\partial (y_l)_i}{\partial \mu }=\dfrac{1}{\rho ((z_l)_i+(y_l)_i)}. \end{aligned}$$

Similarly, we can deduce

$$\begin{aligned} \dfrac{\partial (z_u)_i}{\partial \mu }=\dfrac{\partial (y_u)_i}{\partial \mu }= \dfrac{1}{\rho ((z_u)_i+(y_u)_i)}. \end{aligned}$$

\(\square \)

Proof of Theorem 2.1

To simplify notation, we abbreviate \(F(x,s_l,s_u;\mu ,\rho )\) as \(F(x,s_l,s_u)\). It is differentiable with respect to x, and

$$\begin{aligned} \begin{array}{rl} &{} \!\!\!\!\!\!\!\!\!\!\!\!\! \nabla _x F(x,s_l,s_u) \\ =&{}c+Qx-\mu Z_l^{-1}\nabla _x z_l-\mu Z_u^{-1}\nabla _x z_u+s_l{\circ }(\nabla _x z_l-e)+s_u{\circ }(\nabla _x z_u+e)\\ {} &{}+\rho (z_l-x+l){\circ } (\nabla _x z_l-e)+\rho (z_u-u+x){\circ } (\nabla _x z_u+e)\\ =&{}c+Qx-\mu Z_l^{-1}\nabla _x z_l-\mu Z_u^{-1}\nabla _x z_u+\rho y_l {\circ } (\nabla _x z_l-e)+\rho y_u {\circ }(\nabla _x z_u+e)\\ =&{}c+Qx-\mu Z_l^{-1}\nabla _x z_l-\mu Z_u^{-1}\nabla _x z_u+\rho y_l {\circ } \nabla _x y_l+\rho y_u {\circ }\nabla _x y_u\\ =&{}c+Qx+(Z_l+Y_l)^{-1}(-\mu e-\rho y_l{\circ } y_l)+(Z_u+Y_u)^{-1}(\mu e+\rho y_u{\circ } y_u)\\ =&{}c+Qx-\rho y_l+\rho y_u, \end{array} \end{aligned}$$

where \(Z_l=\text {diag}{(z_l)}\), \(Y_l=\text {diag}{(y_l)}\), \(Z_u=\text {diag}{(z_u)}\) and \(Y_u=\text {diag}{(y_u)}\). The second equation follows from \(\rho y_l = s_l+\rho (z_l-x+l)\) and \(\rho y_u = s_u+\rho (z_u-u+x)\), whereas the last equation holds as a result of \(\mu +\rho (y_l)_i^2=\rho (y_l)_i((z_l)_i+(y_l)_i)\) and \(\mu +\rho (y_u)_i^2=\rho (y_u)_i((z_u)_i+(y_u)_i)\) for \(i = 1,\dots ,n\).

Thus, we may conclude that

$$\begin{aligned} \nabla _x^2 F(x,s_l,s_u)=Q+\rho (Y_l+Z_l)^{-1}Y_l+\rho (Y_u+Z_u)^{-1}Y_u \succ 0, \end{aligned}$$

which implies that \(F(x,s_l,s_u)\) is a strongly convex function with respect to the variable x.

\(F(x,s_l,s_u)\) is also differentiable with respect to \(s_l\) and \(s_u\), and

$$\begin{aligned} \begin{array}{rl} \nabla _{s_l} F(x,s_l,s_u)=&{}-\mu (Z_l)^{-1}\nabla _{s_l} z_l+(z_l-x+l)+s_l{\circ }\nabla _{s_l} z_l+\rho (z_l-x+l){\circ }\nabla _{s_l} z_l\\ =&{}-\mu (Z_l)^{-1}\nabla _{s_l} z_l+(z_l-x+l)+\rho y_l{\circ }\nabla _{s_l} z_l\\ =&{}z_l-x+l,\\ \nabla _{s_u} F(x,s_l,s_u)=&{}z_u-u+x. \end{array} \end{aligned}$$

Thus, we have

$$\begin{aligned} \begin{array}{l} \nabla _{s_l}^2 F(x,s_l,s_u)=\nabla _{s_l} z_l = -\dfrac{1}{\rho }(Z_l+Y_l)^{-1}Z_l \prec 0,\\ \nabla _{s_u}^2 F(x,s_l,s_u)=\nabla _{s_u} z_u = -\dfrac{1}{\rho }(Z_u+Y_u)^{-1}Z_u \prec 0. \end{array} \end{aligned}$$

Therefore, \(F(x,s_l,s_u)\) is a strongly concave function with respect to the variables \(s_l\) and \(s_u\). \(\square \)

Proof of Theorem 2.3

Since (17a) and (17b) are the primal and dual feasible conditions, respectively, we only need to consider the equivalence of the remaining formulas and the complementary slackness conditions.

If \((x^*,\lambda ^*,s_l^*,s_u^*)\) is a solution of (17), notice that for \(i = 1,\dots ,n\),

$$\begin{aligned} (z_l)_i(x_i,(s_l)_i;0,\rho )&= \frac{1}{2\rho }(|(s_l)_i-\rho (x_i-l_i)|-((s_l)_i-\rho (x_i-l_i)))\\ {}&=\max \{0,x_i-l_i-\frac{(s_l)_i}{\rho }\}=x_i-l_i,\\ (z_u)_i(x_i,(s_u)_i;0,\rho )&= \frac{1}{2\rho }(|(s_u)_i-\rho (u_i-x_i)|-((s_u)_i-\rho (u_i-x_i)))\\ {}&=\max \{0,u_i-x_i-\frac{(s_u)_i}{\rho }\}=u_i-x_i. \end{aligned}$$

Then for any \(i = 1,\dots ,n\), the equality \((z_l^*)_i=x_i^*-l_i\) implies that one has either \(x_i^*=l_i,(s_l^*)_i=\rho (y_l^*)_i \ge 0\), or \(x_i^*\ge l_i,(s_l^*)_i = \rho (x^*_i-l_i-(z_l^*)_i)=0\). The equality \((z_u^*)_i=u_i-x_i^*\) implies that one has either \(x_i^*=u_i,(s_u^*)_i=\rho (y_u^*)_i\ge 0\), or \(x_i^*\le u_i,(s_u^*)_i=\rho (u_i-x^*_i-(z_u^*)_i) = 0\). Thus, all \((x^*, \lambda ^*, s_l^*,s_u^*)\) satisfying (17) represent optimal solutions of the original problem (1).

If \((x^*,\lambda ^*,s_l^*,s_u^*)\) is an optimal solution of the original problem (1), then for each \(i = 1,\dots ,n\), \(x_i^* = l_i,(s_l^*)_i\ge 0\) or \(x_i^*\ge l_i, (s_l^*)_i= 0\). It is easy to verify that \(z_l(x^*,s_l^*;0,\rho )-x^*+l=0\) in both cases. In the same way, we have \(z_u(x^*,s_u^*;0,\rho )-u+x^*=0\). Therefore, \((x^*,\lambda ^*,s_l^*,s_u^*)\) is also a solution to (17). \(\square \)

Proof of Lemma 3.2

The directional derivative of \(\phi _{(\mu ^{(k)},\rho ^{(k)})}(w)\) along \((\Delta \mu ^{(k)},\Delta w^{(k)})\) at \((\mu ^{(k)},w^{(k)})\) is

$$\begin{aligned} \phi ^{'}_{(\mu ^{(k)},\rho ^{(k)})}(w^{(k)};\Delta \mu ^{(k)},\Delta w^{(k)}) =-2\phi _{(\mu ^{(k)},\rho ^{(k)})}(w^{(k)}). \end{aligned}$$

The Taylor’s expansion of \({\phi }_{(\mu ^{(k)}+\alpha \Delta \mu ^{(k)},\rho ^{(k)})}(w^{(k)}+\alpha \Delta w^{(k)})\) with respect to \(\alpha \) at \(\alpha = 0\) shows that

$$\begin{aligned}&\!\!\!\!\!\!\!\!{\phi }_{(\mu ^{(k)}+\alpha \Delta \mu ^{(k)},\rho ^{(k)})}(w^{(k)}+\alpha \Delta w^{(k)})-\phi _{(\mu ^{(k)},\rho ^{(k)})}(w^{(k)})\\&\quad = \alpha \phi ^{'}_{(\mu ^{(k)},\rho ^{(k)})}(w^{(k)};\Delta \mu ^{(k)},\Delta w^{(k)})+o(\alpha )\\&\quad = -2\tau \alpha \phi _{(\mu ^{(k)},\rho ^{(k)})}(w^{(k)})-2(1-\tau )\alpha \phi _{(\mu ^{(k)},\rho ^{(k)})}(w^{(k)})+o(\alpha ). \end{aligned}$$

Thus, (25) holds for all sufficiently small \(\alpha > 0\), since \(\tau < 1\) and \(\phi _{(\mu ^{(k)},\rho ^{(k)})}(w^{(k)})>0\). \(\square \)

Proof of Lemma 3.3

By differentiating the equations \((y_l)_i(z_l)_i = \dfrac{\mu }{\rho }\) and \((z_l)_i-(y_l)_i=x_i-l_i-\dfrac{(s_l)_i}{\rho }\) on \(\rho \), we obtain

$$\begin{aligned} \begin{array}{l} (y_l)_i\dfrac{\partial (z_l)_i}{\partial \rho }+(z_l)_i\dfrac{\partial (y_l)_i}{\partial \rho }=-\dfrac{\mu }{\rho ^2}=-\dfrac{(y_l)_i(z_l)_i}{\rho },\\ \dfrac{\partial (z_l)_i}{\partial \rho } - \dfrac{\partial (y_l)_i}{\partial \rho } = \dfrac{(s_l)_i}{\rho ^2}=\dfrac{x_i-l_i-((z_l)_i-(y_l)_i)}{\rho }. \end{array}\end{aligned}$$

One immediately has \(\dfrac{\partial (z_l)_i}{\partial \rho }=\dfrac{(z_l)_i}{\rho }\dfrac{(x_i-l_i-(z_l)_i)}{(y_l)_i+(z_l)_i}\) and

$$\begin{aligned} \dfrac{\partial ((z_l)_i-x_i+l_i)^2}{\partial \rho }=2((z_l)_i-x_i+l_i)\dfrac{\partial (z_l)_i}{\partial \rho }= -\dfrac{2}{\rho }\dfrac{(z_l)_i}{(y_l)_i+(z_l)_i}((z_l)_i-x_i+l_i)^2. \end{aligned}$$

We can similarly prove \(\dfrac{\partial (z_u)_i}{\partial \rho }=\dfrac{(z_u)_i}{\rho }\dfrac{(u_i-x_i-(z_u)_i)}{(y_u)_i+(z_u)_i}\) and

$$\begin{aligned} \dfrac{\partial ((z_u)_i-u_i+x_i)^2}{\partial \rho }=-\dfrac{2}{\rho }\dfrac{(z_u)_i}{(y_u)_i+(z_u)_i}((z_u)_i-u_i+x_i)^2. \end{aligned}$$

\(\square \)

Proof of Lemma 4.1

By Lemma 3.4, we know that \(\phi _{(\mu ^{(k)},\rho ^{(k)})}(w^{(k)})\le \phi _{(\mu ^{(0)},\rho ^{(0)})}(w^{(0)})\) for all \(k > 0\). According to the definition of the merit function, we have

$$\begin{aligned}\begin{array}{l} \frac{1}{2}\Vert z^{(k)}_l-x^{(k)}+l\Vert ^2\le \phi _{(\mu ^{(0)},\rho ^{(0)})}(w^{(0)}),\\ \frac{1}{2}\Vert z^{(k)}_u-u+x^{(k)}\Vert ^2\le \phi _{(\mu ^{(0)},\rho ^{(0)})}(w^{(0)}), \end{array} \end{aligned}$$

which together with Assumption 4.2 implies that \(\{z^{(k)}_l\}\) and \(\{z^{(k)}_u\}\) are bounded.

By the definition of \(\{y^{(k)}_l\}\), we have

$$\begin{aligned} (y_l^{(k)})_i&= \dfrac{\sqrt{((s_l^{(k)})_i-\rho ^{(k)}(x_i^{(k)}-l_i))^2+4\rho ^{(k)}\mu ^{(k)}}+((s_l)_i^{(k)}-\rho (x_i^{(k)}-l_i))}{2\rho ^{(k)}}\\&\quad \le \dfrac{{|((s_l^{(k)})_i-\rho (x_i^{(k)}-l_i))|+\sqrt{\rho ^{(k)}\mu ^{(k)}}}}{\rho ^{(k)}}\\&\quad \le \dfrac{|(s_l^{(k)})_i|}{\rho ^{(k)}}+|x_i^{(k)}-l_i|+\sqrt{\dfrac{\mu ^{(0)}}{\rho ^{(0)}}}\\&\quad \le \max \{\Vert x^{(k)}\Vert ,1\}/\sigma +|x_i^{(k)}-l_i|+\sqrt{\dfrac{\mu ^{(0)}}{\rho ^{(0)}}}. \end{aligned}$$

Thus, the sequence \(\{y_l^{(k)}\}\) is bounded under Assumption 4.2. The boundedness of \(\{y_u^{(k)}\}\) can be proved in the same way.

The relations \(\rho ^{(k)}(y_l^{(k)})_{i}(z_l^{(k)})_{i}=\mu ^{(k)}\) and \(\rho ^{(k)}(y_u^{(k)})_{i}(z_u^{(k)})_{i}=\mu ^{(k)}\), together with the fact that all \(\{y_l^{(k)}\}, \{z_l^{(k)}\}, \{y_u^{(k)}\}\), and \(\{z_u^{(k)}\}\) are bounded, imply the desired inequalities. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RJ., Liu, XW. & Dai, YH. IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming. J Glob Optim 87, 1027–1053 (2023). https://doi.org/10.1007/s10898-023-01314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-023-01314-8

Keywords

Navigation