Skip to main content
Log in

A new global algorithm for factor-risk-constrained mean-variance portfolio selection

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the factor-risk-constrained mean-variance portfolio-selection (MVPS) problem that allows managers to construct portfolios with desired factor-risk characteristics. Its optimization model is a non-convex quadratically constrained quadratic program that is known to be NP-hard. In this paper, we investigate the new global algorithm for factor-risk-constrained MVPS problem based on the successive convex optimization (SCO) method and the semi-definite relaxation (SDR) with a second-order cone (SOC) constraint. We first develop an SCO algorithm and show that it converges to a KKT point of the problem. We then develop a new global algorithm for factor-risk-constrained MVPS, which integrates the SCO method, the SDR with an SOC constraint, the branch-and-bound framework and the adaptive branch-and-cut rule for factor-related variables, to find a globally optimal solution to the underlying problem within a pre-specified \(\epsilon \)-tolerance. We establish the global convergence of the proposed algorithm and its complexity. Preliminary numerical results demonstrate the effectiveness of the proposed algorithm in finding a globally optimal solution to medium- and large-scale instances of factor-risk-constrained MVPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. All the data used in Sect. 5 can be downloaded on https://github.com/hezhiluo/MVPS.

  2. In our numerical experiments, both the SOCR subproblem in BB-SOC and the SDR subproblem in BB-SDRACS are solved by SeDuMi [52].

  3. Source code for IPOPT can be downloaded from: https://github.com/coin-or/Ipopt.

References

  1. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87, 131–152 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Avriel, M.: Nonlinear Programming: Analysis and Methods. Prentice-Hall Co., Inc., New Jersey (1976)

    MATH  Google Scholar 

  3. Bertsimas, D., Lauprete, G.J., Samarov, A.: Shortfall as a risk measure: Properties, optimization and applications. J. Econ. Dyn. Control 28, 1353–1381 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bryant, F.B., Yarnold, P.R.: Principal Components Analysis and Exploratory and Confirmatory Factor Analysis. In: Reading and Understanding Multivariate Statistics. American Psychological Association, Washington, DC (1995)

  5. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Burer, S., Vandenbussche, D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43(2), 181–195 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Burmeister, E., Ross, S.A.: Using macroeconomic factors to control portfolio risk. Technical Report, Duke University (2003)

  8. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comput. 4, 33–52 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Connor, G.: The three types of factor models: a comparison of their explanatory power. Financ. Anal. J. 51(3), 42–46 (1995)

    Google Scholar 

  10. Ding, X.D., Luo, H.Z., Wu, H.X., Liu, J.Z.: An efficient global algorithm for worst-case linear optimization under uncertainties based on nonlinear semidefinite relaxation. Comput. Optim. Appl. 80(1), 89–120 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Fama, E.F., French, K.R.: Common risk factors in the returns on stock and bonds. J. Financial Econom. 33(1), 3–56 (1993)

    MATH  Google Scholar 

  12. Fama, E.F., French, K.R.: Size and book-to-market factors in earnings and returns. J. Finance 50(1), 131–155 (1995)

    Google Scholar 

  13. Fama, E.F., French, K.R.: A five-factor asset pricing model. J. Financial Econom. 116(1), 1–22 (2015)

    Google Scholar 

  14. Floudas, C.A., Visweswaran, V.: Quadratic optimization. Handbook of Global Optimization, R.Horst and P.M. Pardalos, Eds., Kluwer Academic Publishers, pages 217–270 (1994)

  15. Gould, N.I.M., Toint, P.L.: Numerical methods for large-scale non-convex quadratic programming In: Trends in Industrial and Applied Mathematics (Amritsar, Springer, Boston, 2001). Appl. Optim. 72, 149–179 (2002)

  16. Grinold, R., Kahn, R.: Active Portfolio Management: A Quantitative Approach for Producing Superior Return and Controlling Risk. McGraw-Hill, New York (1999)

    Google Scholar 

  17. Jeff Hong, L., Yang, Yi., Zhang, L.W.: Sequential convex approximations to joint chance constrained programs: A monte carlo approach. Oper. Res. 59(3), 617–630 (2011)

    MathSciNet  MATH  Google Scholar 

  18. IBM ILOG CPLEX. IBM ILOG CPLEX 12.6 User’s Manual for CPLEX (2013). http://www.cplex.com

  19. Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to tokyo stock market. Manage. Sci. 37, 519–531 (1991)

    Google Scholar 

  20. Kurth, A., Tasche, D.: Credit risk contributions to value-at-risk and expected shortfall. Risk 16, 84–88 (2003)

    Google Scholar 

  21. Lanckriet, G.R., Sriperumbudur, B.K.: On the convergence of the concave-convex procedure. Adv. Neural. Inf. Process. Syst. 22, 1759–1767 (2009)

    Google Scholar 

  22. Le Thi, H.A., Huynh, V.N., Pham Dinh, T.: DC programming and DCA for general DC programs. In: Advanced Computational Methods for Knowledge Engineering, pages 15–35. Springer International Publishing (2014)

  23. Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. Global Optim. 11, 253–285 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Li, D., Ng, W.L.: Optimal dynamic portfolio selection: multi-period mean-variance formulation. Math. Finance 10, 387–406 (2004)

    MATH  Google Scholar 

  25. Li, Q., Bai, Y.Q.: Optimal trade-off portfolio selection between total risk and maximum relative marginal risk. Optim. Methods Softw. 31(4), 681–700 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Li, Q., Bai, Y.Q., Yan, X., Zhang, W.: Portfolio selection with the effect of systematic risk diversification: formulation and accelerated gradient algorithm. Optim. Methods Softw. 34(3), 612–633 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Li, Y.J., Zhu, S.S., Li, D.H., Li, D.: Active allocation of systematic risk and control of risk sensitivity in portfolio optimization. Eur. J. Oper. Res. 228(3), 556–570 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program., Ser. B 103, 251–282 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Lipp, T., Boyd, S.: Variations and extension of the convex-concave procedure. Optim. Eng. 17(2), 263–287 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Loridan, P.: Necessary conditions for \(\epsilon \)-optimality. Math. Program. Stud. 19, 140–152 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Lu, C., Liu, Y.F.: An efficient global algorithm for single-group multicast beamforming. IEEE Trans. Signal Process. 65(14), 3761–3774 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Lu, C., Deng, Z.B., Zhou, J., Guo, X.L.: A sensitive-eigenvector based global algorithm for quadratically constrained quadratic programming. J. Global Optim. 73(2), 371–388 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Lu, C., Liu, Y.F., Zhou, J.: An enhanced SDR based global algorithm for nonconvex complex quadratic programs with signal processing applications. IEEE Open J. Signal Process. 1, 120–134 (2020)

    Google Scholar 

  34. Luo, H.Z., Ding, X.D., Peng, J.M., Jiang, R.J., Li, D.: Complexity results and effective algorithms for the worst-case linear optimization under uncertainties. INFORMS J. Comput. 33(1), 180–197 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Luo, H.Z., Bai, X.D., Lim, G., Peng, J.M.: New global algorithms for quadratic programming with a few negative eigenvalues based on alternative direction method and convex relaxation. Math. Program. Comput. 11(1), 119–171 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Luo, H.Z., Chen, S.K., Wu, H.X.: A new branch-and-cut algorithm for non-convex quadratic programming via alternative direction method and semidefinite relaxation. Numer. Algorithms 88(2), 993–1024 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Luo, H.Z., Chen, Y.Y., Zhang, X.Y., Li, D., Wu, H.X.: Effective algorithms for optimal portfolio deleveraging problem with cross impact. arXiv:2012.07368v2, pages 1–50 (2021)

  38. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  39. Morgan, J.P.: Credit Metrics Technical Document, Risk Metrics. J.P. Morgan, New York (1997)

    Google Scholar 

  40. Palacios-Gomez, F., Lasdon, L., Enquist, M.: Nonlinear optimization by successive linear programming. Manage. Sci. 28(10), 1106–1120 (1982)

    MATH  Google Scholar 

  41. Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA. In: Transactions on Computational Intelligence XIII, 1–37. Springer, Berlin, Heidelberg (2014)

  42. Philippe, J.: Value at Risk: The New Benchmark for Controlling Market Risk. Irwin Professional Publishing, Chicago (1996)

    Google Scholar 

  43. Philippe, J.: Value at Risk: The New Benchmark for Managing Financial Risk, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  44. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)

    Google Scholar 

  45. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer-Verlag, New York (1998)

    MATH  Google Scholar 

  46. Ross, S.A.: The arbitrage theory of capital asset pricing. J. Econ. Theory 13, 341–360 (1976)

    MathSciNet  Google Scholar 

  47. Saxena, A., Bonami, P., Lee, J.: Convex relaxation of nonconvex mixed integer quadratically constrained programs: Projected formulations. Math. Program. 130, 359–413 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Sharpe, W.F.: A simplified model for portfolio analysis. Manage. Sci. 9(2), 277–293 (1963)

    Google Scholar 

  49. Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19(3), 425–442 (1964)

    Google Scholar 

  50. Sharpe, W.F.: Budgeting and monitoring pension fund risk. Financ. Anal. J. 58, 74–86 (2002)

    Google Scholar 

  51. Solodov, M.V.: On the sequential quadratically constrained quadratic programming methods. Math. Oper. Res. 29(1), 64–79 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    MathSciNet  MATH  Google Scholar 

  53. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: Local convergence. SIAM J. Optim. 16(1), 32–48 (2005)

    MathSciNet  MATH  Google Scholar 

  54. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: Motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Wächter, A., Biegler, L.T.: On the Implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    MathSciNet  MATH  Google Scholar 

  56. Ye, Y.: On the complexity of approximating a KKT point of quadratic programming. Math. Program. 80, 195–211 (1998)

    MathSciNet  MATH  Google Scholar 

  57. Zhu, S.S., Li, D., Wang, S.Y.: Risk control over bankruptcy in dynamic portfolio selection: a generalized mean-variance formulation. IEEE T. Automat. Contr. 49(3), 447–457 (2004)

    MathSciNet  MATH  Google Scholar 

  58. Zhu, S.S., Cui, X.T., Sun, X.L., Li, D.: Factor-risk-constrained mean-variance portfolio selection: Formulation and global optimization solution approach. J. Risk 14(2), 51–89 (2011)

    Google Scholar 

  59. Zhu, S.S., Li, D., Sun, X.L.: Portfolio selection with marginal risk control. J. Comput. Finance 14(1), 3–28 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hezhi Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is jointly supported by the National Natural Science Foundation of China (NSFC) [Grants 11871433 and 11371324] and the Zhejiang Provincial NSFC [grants LZ21A010003, LY18A010011 and LQ17A010009].

Appendix: proof of prosition 2

Appendix: proof of prosition 2

In this appendix, we present the proof of Prosition 2, which needs the following two lemmas.

Lemma 8

Let \(\{x^k \}\) and \(\{\xi ^k \}\) be the infinite sequences generated by Algorithm 2. Then,

$$\begin{aligned} g^+(x^{k})-g^+(x^{k+1}) \ge \delta _{\min }\Vert \xi ^{k+1}-\xi ^k\Vert _2^2 \end{aligned}$$

for all k, where \(\delta _{\min }=\min \{\delta _j,j\in J\}\).

Proof

We first rewrite problem (27) as the following

$$\begin{aligned} \min \limits _{x\in {{{\mathcal {D}}}}} \tau _k\max \left\{ \max _{j\in J}\left\{ {\tilde{g}}_j(x;\xi ^k)\right\} ,0\right\} . \end{aligned}$$
(40)

Note that two problems (27) and (40) are equivalent in the sense that they have the same optimal value and the same solution set. From Step 1, \((x^{k+1},\nu ^{k+1})\) is the optimal solution of problem (27). Thus, \( x^{k+1}\) is the optimal solution of problem (40), and

$$\begin{aligned} \nu ^{k+1}=\max \left\{ \max _{j\in J}\left\{ {\tilde{g}}_j(x^{k+1};\xi ^k)\right\} ,0\right\} . \end{aligned}$$
(41)

Note that \(x^{k}\) is a feasible solution of problem (40) and \(\tau _k>0\). Thus,

$$\begin{aligned} \nu ^{k+1} \le \max \left\{ \max _{j\in J}\left\{ {\tilde{g}}_j(x^{k};\xi ^k)\right\} ,0\right\} . \end{aligned}$$
(42)

By noting that

$$\begin{aligned} {\tilde{g}}_j(x;\xi ^k)=g_j(x)+\delta _j\Vert Mx-\xi ^k\Vert ^2_2, \end{aligned}$$
(43)

and that \(\xi ^k=Mx^k\) for all k, we yield \({\tilde{g}}_j(x^k;\xi ^k)=g_j(x^k)\) for all k. It then follows from (42) that

$$\begin{aligned} \nu ^{k+1}\le g^+(x^k),\quad \forall k. \end{aligned}$$
(44)

On the other hand, note that \(\xi ^{k+1}=Mx^{k+1}\), we have from (41) that \(v^{k+1}\ge 0\) and

$$\begin{aligned} \nu ^{k+1}\ge & {} {\tilde{g}}_j(x^{k+1};\xi ^k)=g_j(x^{k+1})+\delta _j\Vert \xi ^k -\xi ^{k+1}\Vert ^2_2\\\ge & {} g_j(x^{k+1})+\delta _{\min }\Vert \xi ^k-\xi ^{k+1}\Vert ^2_2,\quad j\in J, \end{aligned}$$

where \(\delta _{\min }=\min \{\delta _j,j\in J\}\). The above inequality yields

$$\begin{aligned} \nu ^{k+1}-\delta _{\min }\Vert \xi ^k-\xi ^{k+1}\Vert ^2_2 \ge \max _{j\in J}\left\{ g_j(x^{k+1})\right\} =g(x^{k+1})>0, \end{aligned}$$

which further implies

$$\begin{aligned} \nu ^{k+1}\ge g^+(x^{k+1})+\delta _{\min }\Vert \xi ^k-\xi ^{k+1}\Vert ^2_2. \end{aligned}$$
(45)

It then follows from (44) and (45) that for all k, one has

$$\begin{aligned} g^+(x^{k})-g^+(x^{k+1}) \ge \delta _{\min }\Vert \xi ^{k+1}-\xi ^k\Vert _2^2. \end{aligned}$$

The proof of the lemma is finished. \(\square \)

Lemma 9

Let the sequence \(\{\tau _k\}\) be generated by Algorithm 2. Suppose that Assumption 1 holds at any \(x\in {{{\mathcal {D}}}}\) with \(g(x)\ge 0\). Then, there exists some index \(k_0\) such that \(\tau _k= \tau _{k_0}\) for all \(k\ge k_0\).

Proof

Suppose, by contradiction, that \(\tau _k\rightarrow +\infty \) as \(k\rightarrow \infty \). Then (31) implies that \(\tau _k<\gamma _k=\min \{\Vert \xi ^{k+1}-\xi ^k\Vert ^{-1},\Vert \eta ^{k+1}\Vert _1+\delta \}\) happens an infinite number of times. It then further follows that there exists a subsequence of iteration indices \(\{k_i\}\), such that

$$\begin{aligned} \lim _{i\rightarrow \infty } \Vert \xi ^{k_i+1}-\xi ^{k_i}\Vert =0,\quad \quad \lim _{i\rightarrow \infty }\Vert \eta ^{k_i+1}\Vert _1=+\infty . \end{aligned}$$
(46)

Taking a further subsequence, if necessary, we can assume that \(\{x^{k_i+1}\}\rightarrow {\bar{x}}\) as \(i\rightarrow \infty \). By Step 1, since \((x^{k_i+1},\nu ^{k_i+1})\) is the optimal solution of convex problem (27) with \(k=k_i\) and \((\eta ^{k_i+1},\mu ^{k_i+1})\) is the associated Lagrange multipliers, we have from the necessary optimality condition (29) that

$$\begin{aligned} \left\{ \begin{array}{l} -\sum _{j\in J}\eta _j^{k_i+1}\nabla {\tilde{g}}_j(x^{k_i+1};\xi ^{k_i}) \in {{{\mathcal {N}}}}_{{{{\mathcal {D}}}}}(x^{k_i+1}),\\ \eta _j^{k_i+1} \left[ {\tilde{g}}_j(x^{k_i+1};\xi ^{k_i})-\nu ^{k_i+1}\right] =0, ~j \in J,\\ \nu ^{k+1}\ge 0,~~{\tilde{g}}_j(x^{k+1};\xi ^{k})\le \nu ^{k+1} ,~~j\in J. \end{array}\right. \end{aligned}$$
(47)

Since \(\xi ^{k_i+1}=Mx^{k_i+1}\) by Step 1, we have

$$\begin{aligned} {\tilde{g}}_j(x^{k_i+1};\xi ^{k_i})=g_j(x^{k_i+1})+\delta _j\Vert \xi ^{k_i+1}-\xi ^{k_i}\Vert ^2, ~j\in J. \end{aligned}$$
(48)

If \(g({\bar{x}})<0\), then when \(k_i\) is sufficiently large, one has

$$\begin{aligned} {\tilde{g}}_j(x^{k_i+1};\xi ^{k_i})-\nu ^{k_i+1}<0,\quad j\in J. \end{aligned}$$

Thus, by (47), \(\eta _j^{k_i+1}=0\), \(j\in J\) and then \(\Vert \eta ^{k_i+1}\Vert _1=0\), which contradicts \(\Vert \eta ^{k_i+1}\Vert _1=+\infty \) as \(i\rightarrow \infty \). Therefore, \(g({\bar{x}})\ge 0\). Let

$$\begin{aligned} \lim _{i\rightarrow \infty }\frac{\eta ^{k_i+1}}{\Vert \eta ^{k_i+1}\Vert _1}={\bar{\eta }}. \end{aligned}$$

Then,

$$\begin{aligned} {\bar{\eta }}_j=0~\mathrm{if}~j\not \in J({\bar{x}})~ \mathrm{and} \sum _{j\in J({\bar{x}})} {\bar{\eta }}_j=1. \end{aligned}$$

By the definition of \({{{\mathcal {N}}}}_{{{{\mathcal {D}}}}}(x^{k_i+1})\), the first inclusion of (47) yields

$$\begin{aligned} -\left( \sum _{j\in J}\eta _j^{k_i+1}\nabla {\tilde{g}}_j(x^{k_i+1};\xi ^{k_i})\right) ^T(x-x^{k_i+1})\le 0,~\forall x\in {{{\mathcal {D}}}}. \end{aligned}$$
(49)

Note that since \(\xi ^{k+1}=Mx^{k+1}\) by Step 1, we obtain

$$\begin{aligned} \nabla {\tilde{g}}_j(x^{k+1};\xi ^k)=\nabla g_j(x^{k+1}) +2\delta _j(\xi ^{k+1}-\xi ^k), ~j\in J, \end{aligned}$$

which, by (46) and \(\{x^{k_i+1}\}\rightarrow {\bar{x}}\) as \(i\rightarrow \infty \), implies

$$\begin{aligned} \lim _{i\rightarrow \infty } \nabla {\tilde{g}}_j(x^{k_i+1};\xi ^{k_i})=\nabla g_j({\bar{x}}),~j\in J. \end{aligned}$$
(50)

By dividing the inequality (49) by \(\Vert \eta ^{k_i+1}\Vert _1\) and letting \(i\rightarrow \infty \), we obtain

$$\begin{aligned} -\left( \sum _{j\in J({\bar{x}})}{\bar{\eta }}_j\nabla g_j({\bar{x}}) \right) ^T(x-{\bar{x}})\le 0,~\forall x\in {{{\mathcal {D}}}}, \end{aligned}$$

which in turn implies that

$$\begin{aligned} 0\in \sum \limits _{j\in J({\bar{x}})}{\bar{\eta }}_j\nabla g_j({\bar{x}})+{{{\mathcal {N}}}}_{{{{\mathcal {D}}}}}({\bar{x}}). \end{aligned}$$

This, by \(\sum _{j\in J({\bar{x}})}{\bar{\eta }}_j=1\), contradicts Condition (9) holds at \({\bar{x}}\) with \(g({\bar{x}})\ge 0\). \(\square \)

Proof of Prosition 2

By Lemma 8, \(\lim _{k\rightarrow \infty } \Vert \xi ^{k+1}-\xi ^{k}\Vert =0\). Then from (30), \(\gamma _k=\Vert \eta ^{k+1}\Vert _1+\delta \) when k is sufficiently large. By Lemma 9, there exists some index \(k_0\) such that \(\tau _k= \tau _{k_0}\) for all \(k\ge k_0\). Hence, from (31), \(\tau _k\ge \Vert \eta ^{k+1}\Vert _1+\delta \) for all k sufficiently large. In view of the second relation of (29), it follows that \(\mu ^{k+1}> 0\), thus, \(\nu ^{k+1} = 0\) when k is sufficiently large. From the last relation of (29), we have that \({\tilde{g}}_j(x^{k+1};\xi ^{k})\le 0\) for \(j\in J\) when k is sufficiently large. Note that since \(\xi ^{k+1}=Mx^{k+1}\) by Step 1, from (43) we have that \({\tilde{g}}_j(x^{k+1};\xi ^{k})=g_j(x^{k+1})+\delta _j\Vert \xi ^{k+1}-\xi ^{k}\Vert ^2\). Since \(\lim _{k\rightarrow \infty } \Vert \xi ^{k+1}-\xi ^{k}\Vert =0\), we obtain \(\lim _{k\rightarrow \infty }{\tilde{g}}_j(x^{k+1};\xi ^{k})=g_j({\bar{x}})\). Consequently, \(g_j({\bar{x}})\le 0\) and so \({\bar{x}}\in {{\mathcal {F}}}\). \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Luo, H., Zhang, X. et al. A new global algorithm for factor-risk-constrained mean-variance portfolio selection. J Glob Optim 87, 503–532 (2023). https://doi.org/10.1007/s10898-022-01218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01218-z

Keywords

Navigation