Skip to main content
Log in

A new greedy strategy for maximizing monotone submodular function under a cardinality constraint

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of maximizing a monotone non-decreasing submodular function \(f :2^\Omega \rightarrow {\mathbb {R}}_{+}\) subject to a cardinality constraint, i.e., \(\max \{ f(A) : |A| \le k, A \subseteq \Omega \} \). We propose a deterministic algorithm based on a new greedy strategy for solving this problem. We prove that when the objective function f satisfies certain assumptions, the algorithm we propose can return a \(1 - \kappa _f (1 - \frac{1}{k})^k\) approximate solution with O(kn) value oracle queries, where \(\kappa _f\) is the curvature of the monotone submodular function f. We also show that our algorithm outperforms the traditional greedy algorithm in some cases. Furthermore, we demonstrate how to implement our algorithm in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that \( 1 - \kappa _f e^{-1} > \frac{1}{\kappa _f} (1 - e^{-\kappa _f} )\) holds for any \(\kappa _f \in (0,1)\).

  2. We will explain this assumption in section 3.

  3. To see this, one should refer to Lemma 3, which explains the relation between \(\Psi _i\) and the marginal gain of the distorted objective function \(\Phi _i\).

References

  1. Ageev, A., Hassin, R., Sviridenko, M.: A 0.5-approximation algorithm for max dicut with given sizes of parts. SIAM J. Discret. Math. 14(2), 246–255 (2001)

    Article  MathSciNet  Google Scholar 

  2. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theorem. Discret. Appl. Math. 7(3), 251–274 (1984)

    Article  MathSciNet  Google Scholar 

  3. Feige, Uriel: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998)

    Article  Google Scholar 

  4. Feldman, M.: Guess free maximization of submodular and linear sums. Algorithmica 83(3), 853–878 (2021)

  5. Frieze, A., Jerrum, M.: Improved approximation algorithms for maxk-cut and max bisection. Algorithmica 18(1), 67–81 (1997)

    Article  MathSciNet  Google Scholar 

  6. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

    Article  MathSciNet  Google Scholar 

  7. Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications. In International Conference on Machine Learning, pages 2634–2643. PMLR, 2019

  8. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM (JACM) 48(4), 761–777 (2001)

    Article  MathSciNet  Google Scholar 

  9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137–146, 2003

  10. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Information Process. lett. 70(1), 39–45 (1999)

    Article  MathSciNet  Google Scholar 

  11. Krause, A., Guestrin, C.: Near-optimal observation selection using submodular functions. In AAAI 7, 1650–1654 (2007)

  12. Krause, A. , Guestrin, C. E.: Near-optimal nonmyopic value of information in graphical models. arXiv preprint arXiv:1207.1394, 2012

  13. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008)

    MATH  Google Scholar 

  14. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 912–920, 2010

  15. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Progr. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  16. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory Series B 80(2), 346–355 (2000)

    Article  MathSciNet  Google Scholar 

  17. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4), 1197–1218 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguo Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Natural Science Foundation of China under Grant Numbers 11991022 and 12071459 and the Fundamental Research Funds for the Central Universities under grant number E1E40107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Yang, W. & Gao, S. A new greedy strategy for maximizing monotone submodular function under a cardinality constraint. J Glob Optim 83, 235–247 (2022). https://doi.org/10.1007/s10898-021-01103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01103-1

Keywords

Navigation