Skip to main content

Advertisement

Log in

Balancing mixed-model assembly lines with sequence-dependent tasks via hybrid genetic algorithm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Close connections existing among sequence-dependent tasks should be emphasized while assembling products within automotive or electronic industries. This paper addresses the mixed-model assembly line balancing problem with sequence-dependent tasks with two objectives, the minimization of cycle time and workload variance. A hybrid genetic algorithm with novel logic strings was proposed to address the problem. First, both the sequence-dependent connections and precedence relations are integrated into the combined precedence graph so as to transform the original problem into the single-model assembly line balancing problem and to decrease the computational complexity. Second, three heuristic factors are hybridized into the process of initialization with the purpose of improving the quality of initial solution population. Third, considering sequence-dependent tasks, logic strings are designed to ensure the feasibility of chromosomes during two-point crossover and insertion mutation operations. Computational studies have demonstrated that the proposed algorithm can solve problems to near-optimality and even optimality with less computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Salveson, M.E.: The assembly line balancing problem. J. Ind. Eng. 6, 18–25 (1955)

    MathSciNet  Google Scholar 

  2. Scholl, A.: Balancing and Sequencing of Assembly Lines, 2nd edn. Physica, Heidelberg (1999)

    Book  Google Scholar 

  3. Wee, T.S., Magazine, M.J.: Assembly line balancing as generalized bin packing. Oper. Res. Lett. 1, 56–58 (1982)

    Article  MATH  Google Scholar 

  4. Bukchin, Y., Rabinowitch, I.: A branch-and-bound based solution approach for the mixed-model assembly line-balancing problem for minimizing stations and task duplication costs. Eur. J. Oper. Res. 174, 492–508 (2006)

    Article  MATH  Google Scholar 

  5. Merengo, C., Nava, F., Pozzctti, A.: Balancing and sequencing manual mixed-model assembly lines. Int. J. Prod. Res. 37, 2835–2860 (1999)

    Article  MATH  Google Scholar 

  6. Vilarinho, P.M., Simaria, A.S.: A two-stage heuristic method for balancing mixed-model assembly lines with parallel workstations. Int. J. Prod. Res. 40, 1405–1420 (2002)

    Article  MATH  Google Scholar 

  7. Boysen, N., Fliedner, M., Scholl, A.: Assembly line balancing: Which model to use when? Int. J. Prod. Econ. 111, 509–528 (2008)

    Article  MATH  Google Scholar 

  8. Thomopoulos, N.T.: Mixed-model line balancing with smoothed station assignments. Manag. Sci. 16, 593–603 (1970)

    Article  MATH  Google Scholar 

  9. Macaskill, J.L.C.: Production-line balancing for mixed-model lines. Manag. Sci. 19, 423–434 (1972)

    Article  MATH  Google Scholar 

  10. Van Zante-de Fokkert, J., de Kok, T.G.: The mixed and multi model line balancing problem: a comparison. Eur. J. Oper. Res. 100, 399–412 (1997)

    Article  MATH  Google Scholar 

  11. Noorul, A., Jayaprakash, J., Rengarajan, K.: A hybrid genetic algorithm approach to mixed-model assembly line balancing. Int. J. Adv. Manuf. Technol. 28, 337–341 (2006)

    Article  Google Scholar 

  12. Boysen, N., Fliedner, M., Scholl, A.: Assembly line balancing joint precedence graphs under high product variety. IIE Trans. 41, 183–193 (2009)

    Article  Google Scholar 

  13. Giard, V., Jeunet, J.: Optimal sequencing of mixed-models with sequence-dependent setups and utility workers on an assembly line. Int. J. Prod. Econ. 123, 290–300 (2010)

    Article  Google Scholar 

  14. Ozturk, C., Tunali, S., Hnich, B., Ornek, M.A.: Simultaneous balancing and scheduling of flexible mixed-model assembly lines with sequence-dependent setup times. Electron. Notes Discrete Math. 36, 65–72 (2010)

    Article  MATH  Google Scholar 

  15. Yolmeh, A., Kianfar, F.: An efficient hybrid geneticalgorithm to solve assembly linebalancing problem with sequence-dependent setup times. Comput. Ind. Eng. 62, 936–945 (2012)

    Article  Google Scholar 

  16. Tang, Q., Li, J., et al.: Optimization framework for process scheduling of operation-dependent automobile assembly lines. Optim. Lett. 6, 797–824 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mosadegha, H., Zandiehb, M., Ghomia, S.M.T.F.: Simultaneous solving of balancing and sequencing problems with station-dependent assembly times for mixed-model assembly lines. Appl. Soft Comput. 12, 1359–1370 (2012)

    Article  Google Scholar 

  18. Hamtaa, N., Ghomia, S.M.T.F., Jolaib, F., Shirazi, M.A.: A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect. Int. J. Prod. Econ. 141(1), 99–111 (2013)

  19. Scholl, A., Boysen, N., Fliedner, M.: The sequence-dependent assembly line balancing problem. OR Spectr. 30, 579–609 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hadi, G., Erel, E.: A goal programming approach to mixed-model assembly line balancing problem. Prod. Econ. 48, 177–185 (1997)

    Article  Google Scholar 

  21. Helgeson, W.B., Birnie, D.P.: Assembly line balancing using the ranked positional weight technique. J. Ind. Eng. 12, 394–397 (1961)

    Google Scholar 

  22. Bock, S.: Using distributed search methods for balancing mixed-model assembly lines in the automotive industry. OR Spectr. 30, 551–578 (2006)

    Article  MATH  Google Scholar 

  23. Simaria, A., Vilarinho, P.: A genetic algorithm based approach to the mixed-model assembly line balancing problem of type II. Comput. Ind. Eng. 47, 391–407 (2004)

    Article  Google Scholar 

  24. Zhang, W., Gen, M.: An efficient multiobjective genetic algorithm for mixed-model assembly line balancing problem considering demand ratio-based cycle time. J. Intell. Manuf. 22, 367–378 (2009)

    Article  Google Scholar 

  25. Manavizadeh, N., Rabbani, M., Moshtaghi, D., Jolai, F.: Mixed-model assembly line balancing in the make-to-order and stochastic environment using multi-objective evolutionary algorithms. Expert Syst. Appl. 39, 12026–12031 (2012)

    Article  Google Scholar 

  26. ElMihoub, T.A., Hopgood, A.A., Nolle, L., Battersby, A.: Hybrid genetic algorithms: a review. Eng. Lett. 3, 2–16 (2006)

    Google Scholar 

  27. Akpinar, S., Bayhan, G.M.: A hybrid genetic algorithm for mixed-model assembly line balancing problem with parallel workstations and zoning constraints. Eng. Appl. Artif. Intell. 24, 449–457 (2011)

    Article  Google Scholar 

  28. Kilbridge, M.D., Wester, L.: A heuristic method of assembly line balancing. J. Ind. Eng. 7, 292–298 (1961)

    Google Scholar 

  29. Moodie, C.L., Young, H.H.: A heuristic method of assembly line balancing for assumptions of constant or variable work element times. J. Ind. Eng. 1, 23–29 (1965)

    Google Scholar 

  30. Holland, J.H.: Adaptation in Natural and Artificial System. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  31. Tonge, F.M.: Summary of a heuristic line balancing procedure. Manag. Sci. 7, 21–42 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yamamoto, A.: A quantitative comparison of loading pattern optimization methods for in-core fuel management of PWR. J. Nucl. Sci. Technol. 34, 339–347 (1997)

    Article  Google Scholar 

  33. Yang, S.M., Shao, D.G., Luo, Y.J.: A novel evolution strategy for multiobjective optimization problem. Appl. Math. Comput. 170, 850–873 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)

    Article  MATH  Google Scholar 

  35. Miettinen, K., Makela, M.M., Toivanen, J.: Numerical comparison of some penalty-based constraint handing techniques in genetic algorithms. J. Glob. Optim. 27, 427–446 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Alvarenga, G.B., Mateus, G.R.: Hierarchical tournament selection genetic algorithm for the vehicle routing problem with time windows. In: Proceedings of the Fourth International Conference on Hybrid Intelligent Systems, pp. 410–415 (2004)

  37. Herdy, M.: Application of the evolution strategy to discrete optimization problems. In: Proceedings of lst lnternational Conference Parallel Problem Solving from Nature (PPSN), Lecture Notes in Computer Science, vol. 496, pp. 188–192 (1991)

  38. Scholl, A.: Data of assembly line balancing problems. Working Paper, TH Darmstadt (1993)

  39. Kim, Y.K., Kim, S.J., Kim, J.Y.: Balancing and sequencing mixed-model U-lines with a co-evolutionary algorithm. Prod. Plan. Control 11, 754–764 (2000)

    Article  Google Scholar 

  40. Kim, Y.K., Kim, J.Y., Kim, Y.: An endosymbiotic evolutionary algorithm for the integration of balancing and sequencing in mixed-model U-lines. Eur. J. Oper. Res. 68, 838–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to say thanks to the Computer-Aided Systems Laboratory of Princeton University and Dongfeng Peugot Citroen Automobile Company.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuhua Tang or Christodoulos A. Floudas.

Additional information

Supported by Natural Science Foundation of China under Grant Nos. 50875190 and 51275366.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Liang, Y., Zhang, L. et al. Balancing mixed-model assembly lines with sequence-dependent tasks via hybrid genetic algorithm. J Glob Optim 65, 83–107 (2016). https://doi.org/10.1007/s10898-015-0316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0316-1

Keywords

Navigation