Skip to main content
Log in

Necessary optimality conditions for bilevel set optimization problems

  • Original Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Bilevel programming problems are hierarchical optimization problems where in the upper level problem a function is minimized subject to the graph of the solution set mapping of the lower level problem. In this paper necessary optimality conditions for such problems are derived using the notion of a convexificator by Luc and Jeyakumar. Convexificators are subsets of many other generalized derivatives. Hence, our optimality conditions are stronger than those using e.g., the generalized derivative due to Clarke or Michel-Penot. Using a certain regularity condition Karush-Kuhn-Tucker conditions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amahroq T. and Gadhi N. (2003). Second order optimality conditions for an extremal problem under inclusion constraints. J. Math. Anal. Appl. 285: 74–85

    Article  Google Scholar 

  2. Amahroq, T., Gadhi, N., Riahi, H.: Epi-differentiability and optimality conditions for an extremal problem. J. Inequal. Pure Appl. Math., Victoria University, ISSN electronic 1443–5756 4(2) Article 41 (2003)

  3. Babahadda, H., Gadhi, N.: Necessary optimality conditions for bilevel optimization problems using convexificators (To appear) in J. Global. Optim.

  4. Bard J.F. (1991). Some properties of the bilevel programming problem. J. Optim. Theory Appl. 68: 371–378

    Article  Google Scholar 

  5. Bank B., Guddat J., Klatte D., Kummer B. and Tammer K. (1982). Nonlinear Parametric Optimization. Akademie-Verlag, Berlin

    Google Scholar 

  6. Chanas S., Delgado M., Verdegay J.L. and Vila M.A. (1993). Interval and fuzzy extensions of classical transportation problems. Transport. Plan. Technol. 17: 203–218

    Article  Google Scholar 

  7. Chen, Y., Florian, M.: On the geometry structure of linear bilevel programs: A dual approach, Technical Report CRT-867, Centre de Recherche sur les transports. Université de Montreal, Montreal, Quebec, Canada (1992)

  8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience (1983)

  9. Clarke, F.H.: Necessary conditions for a general control problem in calculus of variations and control. In: Russel D. (ed.) Mathematics research center, Pub.36. University of Wisconsin, pp. 259–278, New York Academy (1976)

  10. Craven B.D., Ralph D. and Glover B.M. (1995). Small convex-valued subdifferentials in mathematical programming. Optimization 32: 1–21

    Article  Google Scholar 

  11. Dantzig G.B., Folkman J. and Shapiro N. (1967). On the continuity of the minimum set of a continuous function. J. Math. Anal. Appl. 17: 512–548

    Article  Google Scholar 

  12. Demyanov V.F. and Jeyakumar V. (1997). Hunting for a smaller convex subdifferential. J. Global Optim. 10: 305–326

    Article  Google Scholar 

  13. Dempe S. (1992). A necessary and a sufficient optimality condition for bilevel programming problems. Optimization 25: 341–354

    Article  Google Scholar 

  14. Dempe S. (2002). Foundations of Bilevel Programming. Kluwer Academie Publishers, Dordrecht

    Google Scholar 

  15. Dempe S. (1997). First-order necessary optimality conditions for general bilevel programming problems. J. Optim. Theory Appl. 95: 735–739

    Article  Google Scholar 

  16. Dempe S. and Schmidt H. (1996). On an algorithm solving two-level programming problems with nonunique lower level solutions. Comput. Optim. Appl. 6: 227–249

    Google Scholar 

  17. Dien P.H. (1983). Locally Lipschitzian set-valued maps and general extremal problems with inclusion constraints. Acta. Math. Vietnam. 1: 109–122

    Google Scholar 

  18. Dien P.H. (1985). On the regularity condition for the extremal problem under locally Lipschitz inclusion constraints. Appl. Math. Appl. 13: 151–161

    Google Scholar 

  19. Ekeland I. (1974). On the variational principle. J. Math. Anal. Appl. 47: 324–353

    Article  Google Scholar 

  20. Gadhi N. (2005). Necessary optimality conditions for Lipschitz multiobjective optimization problems. Georgian Math. J. 12: 65–74

    Google Scholar 

  21. Huang H.X. and Pardalos P.M. (2002). A multivariate partition approach to optimization problems. Cybernet. Syst. Anal. 38: 265–275

    Article  Google Scholar 

  22. Ioffe A.D. (1989). Approximate subdifferential and applications.. III : the metric theory. Mathematika 36: 1–38

    Google Scholar 

  23. Jahn J. (2004). Vector optimization. Springer, Berlin

    Google Scholar 

  24. Jahn J. and Rauh R. (1997). Contingent epiderivatives and set-valued optimization. Math. Method. Oper. Res. 46: 193–211

    Article  Google Scholar 

  25. Jeyakumar V. and Luc D.T. (1998). Approximate Jacobian matrices for continuous maps and C1-Optimization. SIAM J. Control Optim. 36: 1815–1832

    Article  Google Scholar 

  26. Jeyakumar V., Luc D.T. and Schaible S. (1998). Characterizations of generalized monotone nonsmooth continuous maps using approximate Jacobians. J. Convex Anal. 5: 119–132

    Google Scholar 

  27. Jeyakumar V. and Luc D.T. (1999). Nonsmooth calculus, minimality and monotonicity of convexificators. J. Optim. Theory Appl. 101: 599–621

    Article  Google Scholar 

  28. Klose J. (1992). Sensitivity analysis using the tangent derivative. Numer. Funct. Anal. Optimiz. 13: 143–153

    Article  Google Scholar 

  29. Kuroiwa D. (1998). Natural criteria of set-valued optimization, Manuscript. Shimane University, Japan

    Google Scholar 

  30. Li Z. (1999). A theorem of the alternative and its application to the optimization of set-valued maps. J. Optim. Theory Appl. 100: 365–375

    Article  Google Scholar 

  31. Loewen P.D. (1992). Limits of Frechet normals in nonsmooth analysis. Optimization and Nonlinear Analysis. Pitman Research Notes Math, Ser. 244: 178–188

    Google Scholar 

  32. Luc D.T. (1991). Contingent derivatives of set-valued maps and applications to vector optimization. Math. Program. 50: 99–111

    Article  Google Scholar 

  33. Luc D.T. and Malivert C. (1992). Invex optimization problems. Bull. Austral. Math. Soc. 46: 47–66

    Article  Google Scholar 

  34. Marti K. (2005). Stochastic Optimization Methods. Springer, Berlin

    Google Scholar 

  35. Michel, P., Penot, J-P.: Calcul sous-differentiel pour des fonctions Lipschitziennes et non Lipschitziennes. C.R. Acad. Sc. Paris 298 (1984)

  36. Michel P. and Penot J-P. (1992). A generalized derivative for calm and stable functions. Diff. Integral Eq. 5(2): 433–454

    Google Scholar 

  37. Migdalas, A., Pardalos, P.M., Värbrand, P.: Multilevel optimization : algorithms and applications. Kluwer Academic Publishers (1997)

  38. Mordukhovich, B.S.: Variational analysis and generalized differentiation. Vol. I, II, Springer Verlag, Berlin et al. (2006)

  39. Mordukhovich B.S. and Shao Y. (1995). On nonconvex subdifferential calculus in Banach spaces. J. Convex Anal. 2: 211–228

    Google Scholar 

  40. Outrata J.V. (1993). On necessary optimality conditions for Stackelberg problems. J. Optim. Theory Appl. 76: 306–320

    Article  Google Scholar 

  41. Outrata J.V. (1993). Optimality problems with variational inequality constraints. SIAM J. Optim. 4: 340–357

    Article  Google Scholar 

  42. Penot J.P. (1988). On the mean-value theorem. Optimization 19: 147–156

    Article  Google Scholar 

  43. Ralph D. and Dempe S. (1995). Directional derivatives of the solution of a parametric nonlinear program. Math. Program. 70: 159–172

    Google Scholar 

  44. Thibault L. (1991). On subdifferentials of optimal value functions. SIAM J. Control Optim. 29: 1019–1036

    Article  Google Scholar 

  45. Treiman J.S. (1995). The linear nonconvex generalized gradient and Lagrange multipliers. SIAM J. Optim. 5: 670–680

    Article  Google Scholar 

  46. Wang S., Wang Q. and Romano-Rodriguez S. (1993). Optimality conditions and an algorithm for linear-quadratic bilevel programs. Optimization 4: 521–536

    Google Scholar 

  47. Ye J.J. and Zhu D.L. (1995). Optimality conditions for bilevel programming problems. Optimization 33: 9–27

    Article  Google Scholar 

  48. Ye, J.J.: Constraint qualifications and KKT conditions for bilevel programming problems. Math. Oper. Res. (2007, to appear)

  49. Zhang R. (1993). Problems of hierarchical optimization in finite dimensions. SIAM J. Optim. 4: 521–536

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gadhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dempe, S., Gadhi, N. Necessary optimality conditions for bilevel set optimization problems. J Glob Optim 39, 529–542 (2007). https://doi.org/10.1007/s10898-007-9154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-007-9154-0

Keywords

Mathematics Subject Classification (2000)

Navigation