Skip to main content
Log in

A Dual-Signal Sensing for the Visual and Luminescent Detection of p-Phenylenediamine Based on Cerium-Nitrogen-Co-Doped Carbon Dots

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Herein, a visual and luminescent dual-mode (colorimetric and fluorometric) method for the detection of P-phenylenediamine (PPD) in hair dye was successfully established based on cerium-nitrogen co-doped carbon dots (Ce, N-CDs) that displayed remarkable luminescence and peroxidase activity. Ce, N-CDs catalyzed H2O2 to produce superoxide anion, which then oxidized the colorless 3,3,5,5-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB), capable of quenching the fluorescence through fluorescence resonance energy transfer (FRET) between Ce, N-CDs and oxTMB. The reducing properties of PPD could reduce oxTMB back to TMB, leading to a decrease in the absorption intensity of oxTMB and a fluorescence recovery of Ce, N-CDs. As a result, the quantitative detection of PPD could be achieved by measuring the absorption values of oxTMB and the fluorescence signal of Ce, N-CDs. The detection limits for PPD were calculated as 0.36 µM and 0.10 µM for colorimetry and fluorimetry, respectively. Furthermore, smartphone application (ColorPicker) capable of measuring the RGB value of the color was utilized in the detection system, facilitating on-site quantitative detection. This approach effectively shortens the detection time and simplifies the operation, offering a powerful and convenient tool for real-time monitoring of PPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that has been used is confidential.

References

  1. Venkatesan G, Dancik Y, Sinha A, Kyaw HM, Srinivas R, Dawson TL, Bigliardi M, Bigliardi P, Pastorin G (2021) Development of novel alternative hair dyes to hazardous para-phenylenediamine. J Hazard Mater 402:123712

    Article  CAS  PubMed  Google Scholar 

  2. Kim K-H, Kabir E, Jahan SA (2016) The use of personal hair dye and its implications for human health. Environ Int 89–90:222–227

    Article  PubMed  Google Scholar 

  3. Antelmi A, Bruze M, Zimerson E, Engfeldt M, Young E, Persson L, Foti C, Sörensen Ö, Svedman C (2017) Evaluation of concordance between labelling and content of 52 hair dye products: overview of the market of oxidative hair dye. Eur J Dermatol 27:123–131

    Article  CAS  PubMed  Google Scholar 

  4. He J, Xu X, Sun H, Miao T, Li M, Zhou S, Zhou W (2023) Participation of Lattice Oxygen in Perovskite Oxide as a highly sensitive sensor for p-Phenylenediamine detection. Molecules 28:1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou J, Xu H, Wan G-H, Duan C-F, Cui H (2004) Enhancing and inhibiting effects of aromatic compounds on luminol–dimethylsulfoxide–OH – chemiluminescence and determination of intermediates in oxidative hair dyes by HPLC with chemiluminescence detection. Talanta 64:467–477

    Article  CAS  PubMed  Google Scholar 

  6. Guerra E, Lamas JP, Llompart M, Garcia-Jares C (2017) Determination of oxidative hair dyes using miniaturized extraction techniques and gas chromatography-tandem mass spectrometry. Microchem J 132:308–318

    Article  CAS  Google Scholar 

  7. Bai Y-H, Li J-Y, Zhu Y-H, Xu J-J, Chen H-Y (2010) Selective detection of p-Phenylenediamine in hair dyes based on a special CE mechanism using MnO2 nanowires. Electroanalysis 22:1239–1247

    Article  CAS  Google Scholar 

  8. Che Y-X, Hu J-P, Tao S-P, Lin Q, Yao H, Zhang Y-M, Wei T-B (2023) Constructing a novel turn-on fluorescent sensor based on phenazine macrocycle through halogen bond interaction for the naked-eye detection of phenylenediamine isomers. Sens Actuators B 393:134186

    Article  CAS  Google Scholar 

  9. Gu M, Duan J, Mao Q, Zhang S, Lv J (2019) Direct chemiluminescent sensing of para-phenylenediamine over its isomers and analogues via luminol diazotization[J]. Sens Actuators B 287:173–179

    Article  CAS  Google Scholar 

  10. Pot LM, Coenraads P-J, Blömeke B, Puppels GJ, Caspers PJ (2016) Real-time detection ofp-phenylenediamine penetration into human skin byin vivoRaman spectroscopy. Contact Dermat 74:152–158

    Article  CAS  Google Scholar 

  11. Chen X, Feng M, Xie X, Zhang Y, Zhang J, Yang X (2022) Fe single atoms anchored on fluorine-doped ultrathin carbon nanosheets for sensitive colorimetric detection of p-phenylenediamine. Talanta 246:123487

    Article  CAS  PubMed  Google Scholar 

  12. Feng M, Zhang Q, Chen X, Deng D, Xie X, Yang X (2022) Controllable synthesis of boron-doped Zn–N–C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosens Bioelectron 210:114294

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Liu B, Hu D, Zhang S, Pei Y, Gong Z (2020) Sensitive and visual detection of p-phenylenediamine by using dialdehyde cellulose membrane as a solid matrix. Anal Chim Acta 1139:189–197

    Article  CAS  PubMed  Google Scholar 

  14. Cai Y, Zhu H, Zhou W, Qiu Z, Chen C, Qileng A, Li K, Liu Y (2021) Capsulation of AuNCs with AIE Effect into Metal–Organic Framework for the marriage of a fluorescence and Colorimetric Biosensor to detect Organophosphorus Pesticides. Anal Chem 93:7275–7282

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Wang M, Liu J, Lv Y, Su X (2023) Construction of a dual-signal sensing platform based on DNA enhanced peroxidase-activity of iron cobalt oxide nanosheets for thrombin detection. Sens Actuators B 396:134526

    Article  CAS  Google Scholar 

  16. Manioudakis J, Victoria F, Thompson CA, Brown L, Movsum M, Lucifero R, Naccache R (2019) Effects of nitrogen-doping on the photophysical properties of carbon dots. J Mater Chem 7:853–862

    CAS  Google Scholar 

  17. Yuan YH, Liu ZX, Li RS, Zou HY, Lin M, Liu H, Huang CZ (2016) Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale 8:6770–6776

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Ma G, Zhang A, Gu W, Wei J, Wang R (2022) Preparation of Carbon dots with Ultrahigh Fluorescence Quantum Yield based on PET Waste[J]. ACS Omega 7:38037–38044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fan P, Liu C, Hu C, Li F, Lin X, Yang S, Xiao F (2022) Green and facile synthesis of iron-doped biomass carbon dots as a dual-signal colorimetric and fluorometric probe for the detection of ascorbic acid. New J Chem 46:2526–2533

    Article  CAS  Google Scholar 

  20. Chu X, Ning G, Zhou Z, Liu Y, Xiao Q, Huang S (2020) Bright Mn-doped carbon dots for the determination of permanganate and L-ascorbic acid by a fluorescence on-off-on strategy. Microchim Acta 187:659

    Article  CAS  Google Scholar 

  21. Zhang Z, Fan Z (2021) Application of cerium–nitrogen co-doped carbon quantum dots to the detection of tetracyclines residues and bioimaging. Microchim Acta 165:106139

    Article  CAS  Google Scholar 

  22. Tao Y, Wan R, Wang J, Liu Q, Tian M, Wang L, Yang Y, Zou Y, Luo Y, Ke F, Zhou Q, Wang D, Gao D (2023) Carbonized human hair derived carbon dots for detection of clozapine. Spectrochim Acta Part A 298:122803

    Article  CAS  Google Scholar 

  23. Tang Z, Dai Z, Gong M, Chen H, Zhou X, Wang Y, Jiang C, Yu W, Li L (2023) Efficient removal of uranium(VI) from aqueous solution by a novel phosphate-modified biochar supporting zero-valent iron composite. Environ Sci Pollut Res 30:40478–40489

    Article  CAS  Google Scholar 

  24. Dai Z, Sun Y, Zhang H, Ding D, Li L (2020) Photocatalytic reduction of U(VI) in wastewater by mGO/g-C3N4 nanocomposite under visible LED light irradiation. Chemosphere 254:126671

    Article  CAS  PubMed  Google Scholar 

  25. Jana J, Lee HJ, Chung JS, Kim MH, Hur SH (2019) Blue emitting nitrogen-doped carbon dots as a fluorescent probe for Nitrite ion sensing and cell-imaging. Anal Chim Acta 1079:212–219

    Article  CAS  PubMed  Google Scholar 

  26. Peng B, Guo Y, Ma Y, Zhou M, Zhao Y, Wang J, Fang Y (2022) Smartphone-assisted multiple-mode assay of ascorbic acid using cobalt oxyhydroxide nanoflakes and carbon quantum dots. Microchem J 175:107185

    Article  CAS  Google Scholar 

  27. Alshatteri AH, Ali GK, Omer KM (2023) Enhanced peroxidase-mimic Catalytic Activity via Cerium Doping of Strontium-based metal–Organic frameworks with Design of a smartphone-based sensor for On-Site salivary total antioxidant capacity detection in Lung Cancer patients. ACS Appl Mater Interfaces 15:21239–21251

    Article  CAS  PubMed  Google Scholar 

  28. Liang C, Lan Y, Sun Z, Zhou L, Li Y, Liang X, Qin X (2020) Synthesis of carbon quantum dots with iron and nitrogen from Passiflora edulis and their peroxidase-mimicking activity for colorimetric determination of uric acid. Microchim Acta 187:405

    Article  CAS  Google Scholar 

  29. Han W, Miao C, Zhang X, Lin Y, Hao X, Huang Z, Weng S, Lin X, Guo X, Huang J (2021) A signal-off fluorescent strategy for deferasirox effective detection using carbon dots as probe and Cu2+ as medium. Anal Chim Acta 1179:338853

    Article  CAS  PubMed  Google Scholar 

  30. Liu M, Li S, Tang N, Wang Y, Yang X, Wang S (2020) Highly efficient capture of phosphate from water via cerium-doped metal-organic frameworks. J Clean Prod 265:121782

    Article  CAS  Google Scholar 

  31. Sun X-H, Ma M, Tian R, Chai H-M, Wang J-W, Gao L-J (2023) One-Pot Hydrothermal Method Preparation of Cerium–Nitrogen-Codoped Carbon Quantum dots from Waste Longan Nucleus as a fluorescent sensor for sensing drug Rifampicin. ACS Omega 8:34859–34867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Du H, He L, Zhang M, Manyande A, Chen H (2023) Carbon quantum dots derived from fish scales as fluorescence sensors for detection of malachite green. J Food Meas Charact 17:3368–3376

    Article  Google Scholar 

  33. Zhang R, Liu L, Li W, Luo X, Wu F (2023) Luminescent carbon dots with excellent peroxidase mimicking property for fluorometric and colorimetric detection of glucose. Colloids Surf B 222:113125

    Article  CAS  Google Scholar 

  34. Yuan X, Zhao H, Yuan Y, Chen M, Zhao L, Xiong Z (2022) CuCo2S4 nanozyme-based stimulus-responsive hydrogel kit for rapid point-of-care testing of uric acid. Microchim Acta 189:283

    Article  CAS  Google Scholar 

  35. Peng L-J, Zhou H-Y, Zhang C-Y, Yang F-Q (2022) Study on the peroxidase-like activity of cobalt phosphate and its application in colorimetric detection of hydrogen peroxide. Colloids Surf 647:129031

    Article  CAS  Google Scholar 

  36. Xu Y, Li P, Hu X, Chen H, Tang Y, Zhu Y, Zhu X, Zhang Y, Liu M, Yao S (2021) Polyoxometalate nanostructures decorated with CuO nanoparticles for sensing ascorbic acid and Fe2+ ions. ACS Appl Nano Mater 4:8302–8313

    Article  CAS  Google Scholar 

  37. Zhu Y, Deng X, Chen J, Hu Z, Wu F (2023) Coffee grounds-derived carbon quantum dots as peroxidase mimetics for colorimetric and fluorometric detection of ascorbic acid. Food Chem 429:136957

    Article  CAS  PubMed  Google Scholar 

  38. Lian T, Chen J, Tang X, Qiu P, Hu Y (2024) Bifunctional Fe-MOF@Fe3O4NPs for colorimetric and ratiometric fluorescence detection of uric acid in human urine. Microchem J 196:109538

    Article  CAS  Google Scholar 

  39. Zhou X, Zhang J, Huang D, Yi Y, Wu K, Zhu G (2023) Nitrogen-doped Ti3C2 MXene quantum dots as an effective FRET ratio fluorometric probe for sensitive detection of Cu2+ and D-PA. Spectrochim Acta Part A 293:122484

    Article  CAS  Google Scholar 

  40. Li Z, Zhou Z, Wang J, Sun Q, Zhang J, Tao T, Fu Y (2023) Ratiometric fluorescence detection of doxorubicin by R-CQDs based on the inner filter effect and fluorescence resonance energy transfer. New J Chem 47:3541–3548

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82073604 and 82304195).

Author information

Authors and Affiliations

Authors

Contributions

Q. L. Conceptualization, Methodology, Investigation, Writing - review & editing. Y.Y. Methodology. W. W. Writing - review & editing. B. L. Investigation. W. T. Data curation, Investigation. X.Z. Investigation, Validation.J. L. Conceptualization, Supervision, Writing e review & editing, Funding acquisition. S.Y. Supervision, Funding acquisition, Writing e review & editing.

Corresponding authors

Correspondence to Jinquan Liu or Shengyuan Yang.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Yin, Y., Wang, W. et al. A Dual-Signal Sensing for the Visual and Luminescent Detection of p-Phenylenediamine Based on Cerium-Nitrogen-Co-Doped Carbon Dots. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03696-8

Keywords

Navigation